mirror of
https://github.com/deepseek-ai/Janus.git
synced 2025-04-19 10:09:00 -04:00
Merge edd64d88f5
into 1daa72fa40
This commit is contained in:
commit
f538b1609e
@ -21,6 +21,9 @@ import torch
|
||||
from transformers import AutoModelForCausalLM
|
||||
|
||||
from janus.models import MultiModalityCausalLM, VLChatProcessor
|
||||
from janus.utils.cuda_memory_manager import (
|
||||
monitor_memory,
|
||||
)
|
||||
import numpy as np
|
||||
import os
|
||||
import PIL.Image
|
||||
@ -51,6 +54,7 @@ sft_format = vl_chat_processor.apply_sft_template_for_multi_turn_prompts(
|
||||
prompt = sft_format + vl_chat_processor.image_start_tag
|
||||
|
||||
|
||||
@monitor_memory(warning_threshold_gb=1.5, track_stats=True)
|
||||
@torch.inference_mode()
|
||||
def generate(
|
||||
mmgpt: MultiModalityCausalLM,
|
||||
@ -74,10 +78,16 @@ def generate(
|
||||
|
||||
inputs_embeds = mmgpt.language_model.get_input_embeddings()(tokens)
|
||||
|
||||
generated_tokens = torch.zeros((parallel_size, image_token_num_per_image), dtype=torch.int).cuda()
|
||||
generated_tokens = torch.zeros(
|
||||
(parallel_size, image_token_num_per_image), dtype=torch.int
|
||||
).cuda()
|
||||
|
||||
for i in range(image_token_num_per_image):
|
||||
outputs = mmgpt.language_model.model(inputs_embeds=inputs_embeds, use_cache=True, past_key_values=outputs.past_key_values if i != 0 else None)
|
||||
outputs = mmgpt.language_model.model(
|
||||
inputs_embeds=inputs_embeds,
|
||||
use_cache=True,
|
||||
past_key_values=outputs.past_key_values if i != 0 else None,
|
||||
)
|
||||
hidden_states = outputs.last_hidden_state
|
||||
|
||||
logits = mmgpt.gen_head(hidden_states[:, -1, :])
|
||||
@ -90,12 +100,16 @@ def generate(
|
||||
next_token = torch.multinomial(probs, num_samples=1)
|
||||
generated_tokens[:, i] = next_token.squeeze(dim=-1)
|
||||
|
||||
next_token = torch.cat([next_token.unsqueeze(dim=1), next_token.unsqueeze(dim=1)], dim=1).view(-1)
|
||||
next_token = torch.cat(
|
||||
[next_token.unsqueeze(dim=1), next_token.unsqueeze(dim=1)], dim=1
|
||||
).view(-1)
|
||||
img_embeds = mmgpt.prepare_gen_img_embeds(next_token)
|
||||
inputs_embeds = img_embeds.unsqueeze(dim=1)
|
||||
|
||||
|
||||
dec = mmgpt.gen_vision_model.decode_code(generated_tokens.to(dtype=torch.int), shape=[parallel_size, 8, img_size//patch_size, img_size//patch_size])
|
||||
dec = mmgpt.gen_vision_model.decode_code(
|
||||
generated_tokens.to(dtype=torch.int),
|
||||
shape=[parallel_size, 8, img_size // patch_size, img_size // patch_size],
|
||||
)
|
||||
dec = dec.to(torch.float32).cpu().numpy().transpose(0, 2, 3, 1)
|
||||
|
||||
dec = np.clip((dec + 1) / 2 * 255, 0, 255)
|
||||
@ -103,9 +117,9 @@ def generate(
|
||||
visual_img = np.zeros((parallel_size, img_size, img_size, 3), dtype=np.uint8)
|
||||
visual_img[:, :, :] = dec
|
||||
|
||||
os.makedirs('generated_samples', exist_ok=True)
|
||||
os.makedirs("generated_samples", exist_ok=True)
|
||||
for i in range(parallel_size):
|
||||
save_path = os.path.join('generated_samples', "img_{}.jpg".format(i))
|
||||
save_path = os.path.join("generated_samples", "img_{}.jpg".format(i))
|
||||
PIL.Image.fromarray(visual_img[i]).save(save_path)
|
||||
|
||||
|
||||
|
@ -25,6 +25,9 @@ import torchvision.transforms
|
||||
from einops import rearrange
|
||||
|
||||
from janus.janusflow.models.siglip_vit import create_siglip_vit
|
||||
from janus.utils.cuda_memory_manager import (
|
||||
monitor_memory,
|
||||
)
|
||||
|
||||
|
||||
class CLIPVisionTower(nn.Module):
|
||||
@ -104,6 +107,7 @@ class CLIPVisionTower(nn.Module):
|
||||
raise ValueError(f"Unexpected select feature: {self.select_feature}")
|
||||
return image_features
|
||||
|
||||
@monitor_memory(warning_threshold_gb=1.5, track_stats=True)
|
||||
def forward(self, images):
|
||||
"""
|
||||
|
||||
|
@ -31,6 +31,7 @@ from transformers import (
|
||||
from transformers.models.llama.modeling_llama import LlamaRMSNorm
|
||||
from janus.janusflow.models.clip_encoder import CLIPVisionTower
|
||||
from janus.janusflow.models.uvit import ShallowUViTEncoder, ShallowUViTDecoder
|
||||
from janus.utils.cuda_memory_manager import monitor_memory
|
||||
import torch.nn as nn
|
||||
|
||||
|
||||
@ -168,6 +169,7 @@ class MultiModalityCausalLM(MultiModalityPreTrainedModel):
|
||||
)
|
||||
self.vision_gen_dec_aligner = nn.Linear(2048, 768, bias=True)
|
||||
|
||||
@monitor_memory(warning_threshold_gb=1.5, track_stats=True)
|
||||
def prepare_inputs_embeds(
|
||||
self,
|
||||
input_ids: torch.LongTensor,
|
||||
|
@ -27,6 +27,7 @@ from transformers.processing_utils import ProcessorMixin
|
||||
|
||||
from janus.janusflow.models.image_processing_vlm import VLMImageProcessor
|
||||
from janus.utils.conversation import get_conv_template
|
||||
from janus.utils.cuda_memory_manager import monitor_memory
|
||||
|
||||
|
||||
class DictOutput(object):
|
||||
@ -384,6 +385,7 @@ class VLChatProcessor(ProcessorMixin):
|
||||
|
||||
return prepare
|
||||
|
||||
@monitor_memory(warning_threshold_gb=1.5, track_stats=True)
|
||||
def batchify(
|
||||
self, prepare_list: List[VLChatProcessorOutput]
|
||||
) -> BatchedVLChatProcessorOutput:
|
||||
|
@ -25,6 +25,9 @@ import torchvision.transforms
|
||||
from einops import rearrange
|
||||
|
||||
from janus.models.siglip_vit import create_siglip_vit
|
||||
from janus.utils.cuda_memory_manager import (
|
||||
monitor_memory,
|
||||
)
|
||||
|
||||
|
||||
class CLIPVisionTower(nn.Module):
|
||||
@ -104,6 +107,7 @@ class CLIPVisionTower(nn.Module):
|
||||
raise ValueError(f"Unexpected select feature: {self.select_feature}")
|
||||
return image_features
|
||||
|
||||
@monitor_memory(warning_threshold_gb=1.5, track_stats=True)
|
||||
def forward(self, images):
|
||||
"""
|
||||
|
||||
|
@ -31,6 +31,9 @@ from transformers.configuration_utils import PretrainedConfig
|
||||
|
||||
from janus.models.clip_encoder import CLIPVisionTower
|
||||
from janus.models.projector import MlpProjector
|
||||
from janus.utils.cuda_memory_manager import (
|
||||
monitor_memory,
|
||||
)
|
||||
|
||||
|
||||
class vision_head(torch.nn.Module):
|
||||
@ -218,6 +221,7 @@ class MultiModalityCausalLM(MultiModalityPreTrainedModel):
|
||||
language_config = config.language_config
|
||||
self.language_model = LlamaForCausalLM(language_config)
|
||||
|
||||
@monitor_memory(warning_threshold_gb=1.5, track_stats=True)
|
||||
def prepare_inputs_embeds(
|
||||
self,
|
||||
input_ids: torch.LongTensor,
|
||||
@ -259,6 +263,7 @@ class MultiModalityCausalLM(MultiModalityPreTrainedModel):
|
||||
|
||||
return inputs_embeds
|
||||
|
||||
@monitor_memory(warning_threshold_gb=1.5, track_stats=True)
|
||||
def prepare_gen_img_embeds(self, image_ids: torch.LongTensor):
|
||||
return self.gen_aligner(self.gen_embed(image_ids))
|
||||
|
||||
|
@ -27,6 +27,9 @@ from transformers.processing_utils import ProcessorMixin
|
||||
|
||||
from janus.models.image_processing_vlm import VLMImageProcessor
|
||||
from janus.utils.conversation import get_conv_template
|
||||
from janus.utils.cuda_memory_manager import (
|
||||
monitor_memory,
|
||||
)
|
||||
|
||||
|
||||
class DictOutput(object):
|
||||
@ -354,6 +357,7 @@ class VLChatProcessor(ProcessorMixin):
|
||||
|
||||
return prepare
|
||||
|
||||
@monitor_memory(warning_threshold_gb=1.5, track_stats=True)
|
||||
def batchify(
|
||||
self, prepare_list: List[VLChatProcessorOutput]
|
||||
) -> BatchedVLChatProcessorOutput:
|
||||
|
68
janus/utils/cuda_memory_manager.py
Normal file
68
janus/utils/cuda_memory_manager.py
Normal file
@ -0,0 +1,68 @@
|
||||
from functools import wraps
|
||||
from typing import Callable, Any
|
||||
import torch
|
||||
import warnings
|
||||
|
||||
|
||||
def monitor_memory(
|
||||
warning_threshold_gb: float = 2.0,
|
||||
track_stats: bool = True,
|
||||
cleanup_on_warning: bool = True,
|
||||
) -> Callable:
|
||||
"""Memory monitoring decorator for CUDA operations.
|
||||
|
||||
Args:
|
||||
warning_threshold_gb: Memory threshold in GB to trigger warnings
|
||||
track_stats: Whether to track and print memory statistics
|
||||
cleanup_on_warning: Whether to attempt memory cleanup when threshold is reached
|
||||
|
||||
Returns:
|
||||
Decorator function that monitors memory usage
|
||||
"""
|
||||
|
||||
def decorator(func: Callable) -> Callable:
|
||||
@wraps(func)
|
||||
def wrapper(*args, **kwargs) -> Any:
|
||||
if not torch.cuda.is_available():
|
||||
return func(*args, **kwargs)
|
||||
|
||||
# Get initial memory state
|
||||
free_before = torch.cuda.mem_get_info()[0] / 1024**3
|
||||
|
||||
try:
|
||||
# Check memory state and cleanup if needed
|
||||
if free_before < warning_threshold_gb and cleanup_on_warning:
|
||||
torch.cuda.empty_cache()
|
||||
free_after_cleanup = torch.cuda.mem_get_info()[0] / 1024**3
|
||||
|
||||
if free_after_cleanup < warning_threshold_gb:
|
||||
warnings.warn(
|
||||
f"Low memory in {func.__name__}: {free_after_cleanup:.2f}GB free"
|
||||
)
|
||||
|
||||
result = func(*args, **kwargs)
|
||||
|
||||
# Track memory statistics if enabled
|
||||
if track_stats:
|
||||
peak = torch.cuda.max_memory_allocated() / 1024**3
|
||||
free_after = torch.cuda.mem_get_info()[0] / 1024**3
|
||||
print(
|
||||
f"Memory stats for {func.__name__}:\n"
|
||||
f"Peak: {peak:.2f}GB | Delta: {free_before - free_after:.2f}GB"
|
||||
)
|
||||
torch.cuda.reset_peak_memory_stats()
|
||||
|
||||
return result
|
||||
|
||||
except RuntimeError as e:
|
||||
if "out of memory" in str(e):
|
||||
free = torch.cuda.mem_get_info()[0] / 1024**3
|
||||
raise RuntimeError(
|
||||
f"OOM in {func.__name__} with {free:.2f}GB free. "
|
||||
"Consider reducing batch size or image resolution."
|
||||
) from e
|
||||
raise
|
||||
|
||||
return wrapper
|
||||
|
||||
return decorator
|
Loading…
Reference in New Issue
Block a user