adding memory monitoring to janus flow

This commit is contained in:
Elkana Baris 2025-01-29 10:56:28 +02:00
parent cab2784c20
commit edd64d88f5
8 changed files with 65 additions and 86 deletions

View File

@ -54,7 +54,7 @@ sft_format = vl_chat_processor.apply_sft_template_for_multi_turn_prompts(
prompt = sft_format + vl_chat_processor.image_start_tag
@monitor_critical_memory(threshold_gb=2.0)
@monitor_memory(warning_threshold_gb=1.5, track_stats=True)
@torch.inference_mode()
def generate(
mmgpt: MultiModalityCausalLM,
@ -70,36 +70,46 @@ def generate(
input_ids = vl_chat_processor.tokenizer.encode(prompt)
input_ids = torch.LongTensor(input_ids)
tokens = torch.zeros((parallel_size*2, len(input_ids)), dtype=torch.int).cuda()
for i in range(parallel_size*2):
tokens = torch.zeros((parallel_size * 2, len(input_ids)), dtype=torch.int).cuda()
for i in range(parallel_size * 2):
tokens[i, :] = input_ids
if i % 2 != 0:
tokens[i, 1:-1] = vl_chat_processor.pad_id
inputs_embeds = mmgpt.language_model.get_input_embeddings()(tokens)
generated_tokens = torch.zeros((parallel_size, image_token_num_per_image), dtype=torch.int).cuda()
generated_tokens = torch.zeros(
(parallel_size, image_token_num_per_image), dtype=torch.int
).cuda()
for i in range(image_token_num_per_image):
outputs = mmgpt.language_model.model(inputs_embeds=inputs_embeds, use_cache=True, past_key_values=outputs.past_key_values if i != 0 else None)
outputs = mmgpt.language_model.model(
inputs_embeds=inputs_embeds,
use_cache=True,
past_key_values=outputs.past_key_values if i != 0 else None,
)
hidden_states = outputs.last_hidden_state
logits = mmgpt.gen_head(hidden_states[:, -1, :])
logit_cond = logits[0::2, :]
logit_uncond = logits[1::2, :]
logits = logit_uncond + cfg_weight * (logit_cond-logit_uncond)
logits = logit_uncond + cfg_weight * (logit_cond - logit_uncond)
probs = torch.softmax(logits / temperature, dim=-1)
next_token = torch.multinomial(probs, num_samples=1)
generated_tokens[:, i] = next_token.squeeze(dim=-1)
next_token = torch.cat([next_token.unsqueeze(dim=1), next_token.unsqueeze(dim=1)], dim=1).view(-1)
next_token = torch.cat(
[next_token.unsqueeze(dim=1), next_token.unsqueeze(dim=1)], dim=1
).view(-1)
img_embeds = mmgpt.prepare_gen_img_embeds(next_token)
inputs_embeds = img_embeds.unsqueeze(dim=1)
dec = mmgpt.gen_vision_model.decode_code(generated_tokens.to(dtype=torch.int), shape=[parallel_size, 8, img_size//patch_size, img_size//patch_size])
dec = mmgpt.gen_vision_model.decode_code(
generated_tokens.to(dtype=torch.int),
shape=[parallel_size, 8, img_size // patch_size, img_size // patch_size],
)
dec = dec.to(torch.float32).cpu().numpy().transpose(0, 2, 3, 1)
dec = np.clip((dec + 1) / 2 * 255, 0, 255)
@ -107,9 +117,9 @@ def generate(
visual_img = np.zeros((parallel_size, img_size, img_size, 3), dtype=np.uint8)
visual_img[:, :, :] = dec
os.makedirs('generated_samples', exist_ok=True)
os.makedirs("generated_samples", exist_ok=True)
for i in range(parallel_size):
save_path = os.path.join('generated_samples', "img_{}.jpg".format(i))
save_path = os.path.join("generated_samples", "img_{}.jpg".format(i))
PIL.Image.fromarray(visual_img[i]).save(save_path)
@ -117,4 +127,4 @@ generate(
vl_gpt,
vl_chat_processor,
prompt,
)
)

View File

@ -25,6 +25,9 @@ import torchvision.transforms
from einops import rearrange
from janus.janusflow.models.siglip_vit import create_siglip_vit
from janus.utils.cuda_memory_manager import (
monitor_memory,
)
class CLIPVisionTower(nn.Module):
@ -104,6 +107,7 @@ class CLIPVisionTower(nn.Module):
raise ValueError(f"Unexpected select feature: {self.select_feature}")
return image_features
@monitor_memory(warning_threshold_gb=1.5, track_stats=True)
def forward(self, images):
"""

View File

@ -31,6 +31,7 @@ from transformers import (
from transformers.models.llama.modeling_llama import LlamaRMSNorm
from janus.janusflow.models.clip_encoder import CLIPVisionTower
from janus.janusflow.models.uvit import ShallowUViTEncoder, ShallowUViTDecoder
from janus.utils.cuda_memory_manager import monitor_memory
import torch.nn as nn
@ -168,6 +169,7 @@ class MultiModalityCausalLM(MultiModalityPreTrainedModel):
)
self.vision_gen_dec_aligner = nn.Linear(2048, 768, bias=True)
@monitor_memory(warning_threshold_gb=1.5, track_stats=True)
def prepare_inputs_embeds(
self,
input_ids: torch.LongTensor,

View File

@ -27,6 +27,7 @@ from transformers.processing_utils import ProcessorMixin
from janus.janusflow.models.image_processing_vlm import VLMImageProcessor
from janus.utils.conversation import get_conv_template
from janus.utils.cuda_memory_manager import monitor_memory
class DictOutput(object):
@ -384,6 +385,7 @@ class VLChatProcessor(ProcessorMixin):
return prepare
@monitor_memory(warning_threshold_gb=1.5, track_stats=True)
def batchify(
self, prepare_list: List[VLChatProcessorOutput]
) -> BatchedVLChatProcessorOutput:

View File

@ -107,7 +107,7 @@ class CLIPVisionTower(nn.Module):
raise ValueError(f"Unexpected select feature: {self.select_feature}")
return image_features
@monitor_critical_memory(threshold_gb=2.0)
@monitor_memory(warning_threshold_gb=1.5, track_stats=True)
def forward(self, images):
"""

View File

@ -221,7 +221,7 @@ class MultiModalityCausalLM(MultiModalityPreTrainedModel):
language_config = config.language_config
self.language_model = LlamaForCausalLM(language_config)
@monitor_critical_memory(threshold_gb=2.0)
@monitor_memory(warning_threshold_gb=1.5, track_stats=True)
def prepare_inputs_embeds(
self,
input_ids: torch.LongTensor,
@ -263,7 +263,7 @@ class MultiModalityCausalLM(MultiModalityPreTrainedModel):
return inputs_embeds
@monitor_critical_memory(threshold_gb=2.0)
@monitor_memory(warning_threshold_gb=1.5, track_stats=True)
def prepare_gen_img_embeds(self, image_ids: torch.LongTensor):
return self.gen_aligner(self.gen_embed(image_ids))

View File

@ -357,7 +357,7 @@ class VLChatProcessor(ProcessorMixin):
return prepare
@monitor_memory(threshold_gb=2.0)
@monitor_memory(warning_threshold_gb=1.5, track_stats=True)
def batchify(
self, prepare_list: List[VLChatProcessorOutput]
) -> BatchedVLChatProcessorOutput:

View File

@ -1,93 +1,56 @@
# Copyright (c) 2023-2024 DeepSeek.
#
# Permission is hereby granted, free of charge, to any person obtaining a copy of
# this software and associated documentation files (the "Software"), to deal in
# the Software without restriction, including without limitation the rights to
# use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
# the Software, and to permit persons to whom the Software is furnished to do so,
# subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
# FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
# COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
# IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
from dataclasses import dataclass
from typing import Dict, Optional, Callable, Any, Tuple, List
from functools import wraps
from typing import Callable, Any
import torch
import warnings
import time
import math
import logging
from enum import Enum
"""Memory monitoring utilities for Janus.
This module provides essential memory management for multi-modal operations,
focusing on preventing OOM issues and optimizing resource usage for
vision-language tasks.
"""
class JanusMemoryManager:
"""Memory manager tailored for multi-modal operations."""
def __init__(self, config: Dict[str, Any]):
self.warning_threshold_gb = config.get('warning_threshold_gb', 2.0)
self.oom_threshold_gb = config.get('oom_threshold_gb', 1.0)
self.peak_tracking = config.get('peak_tracking', True)
def check_memory(self) -> Dict[str, float]:
"""Get current CUDA memory status."""
if not torch.cuda.is_available():
return {}
return {
'free': torch.cuda.mem_get_info()[0] / 1024**3,
'peak': torch.cuda.max_memory_allocated() / 1024**3
}
def monitor_memory(
threshold_gb: float = 2.0,
track_peak: bool = True
warning_threshold_gb: float = 2.0,
track_stats: bool = True,
cleanup_on_warning: bool = True,
) -> Callable:
"""Decorator for monitoring memory in critical paths.
Designed specifically for multi-modal operations where
memory usage can spike during modality fusion.
"""Memory monitoring decorator for CUDA operations.
Args:
warning_threshold_gb: Memory threshold in GB to trigger warnings
track_stats: Whether to track and print memory statistics
cleanup_on_warning: Whether to attempt memory cleanup when threshold is reached
Returns:
Decorator function that monitors memory usage
"""
def decorator(func: Callable) -> Callable:
@wraps(func)
def wrapper(*args, **kwargs) -> Any:
if not torch.cuda.is_available():
return func(*args, **kwargs)
# Track initial state
# Get initial memory state
free_before = torch.cuda.mem_get_info()[0] / 1024**3
try:
if free_before < threshold_gb:
# Check memory state and cleanup if needed
if free_before < warning_threshold_gb and cleanup_on_warning:
torch.cuda.empty_cache()
free_after_cleanup = torch.cuda.mem_get_info()[0] / 1024**3
if free_after_cleanup < threshold_gb:
if free_after_cleanup < warning_threshold_gb:
warnings.warn(
f"Critical memory state in {func.__name__}: "
f"{free_after_cleanup:.2f}GB free"
f"Low memory in {func.__name__}: {free_after_cleanup:.2f}GB free"
)
result = func(*args, **kwargs)
if track_peak:
# Track memory statistics if enabled
if track_stats:
peak = torch.cuda.max_memory_allocated() / 1024**3
free_after = torch.cuda.mem_get_info()[0] / 1024**3
print(
f"Memory stats for {func.__name__}:\n"
f"Peak usage: {peak:.2f}GB\n"
f"Memory delta: {free_before - free_after:.2f}GB"
f"Peak: {peak:.2f}GB | Delta: {free_before - free_after:.2f}GB"
)
torch.cuda.reset_peak_memory_stats()
return result
@ -95,13 +58,11 @@ def monitor_memory(
if "out of memory" in str(e):
free = torch.cuda.mem_get_info()[0] / 1024**3
raise RuntimeError(
f"OOM in {func.__name__}. Free memory: {free:.2f}GB\n"
f"Consider reducing batch size or image resolution"
f"OOM in {func.__name__} with {free:.2f}GB free. "
"Consider reducing batch size or image resolution."
) from e
raise
finally:
if track_peak:
torch.cuda.reset_peak_memory_stats()
return wrapper
return decorator
return decorator