DeepSeek-V3/experimental/README.md
2025-06-11 21:24:34 +10:00

348 lines
12 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# DeepZig V3 Implementation 🚀
A high-performance implementation of DeepSeek V3 in [Zig](https://ziglang.org/) for blazingly fast inference.
> **⚠️ Status: Experimental Foundation**
>
> This project provides an **experimental foundation** for DeepZig V3 with working draft implementation:
> - ✅ **HTTP server** with OpenAI-compatible API
> - ✅ **BLAS-accelerated tensor operations** (Apple Accelerate working)
> - ✅ **Cross-platform build system** (Zig 0.15.0-dev)
> - ✅ **Memory management** and backend architecture
> - ✅ **Apple Silicon detection and optimization**
> - ✅ **Functional matrix operations** (significant performance improvement)
>
> **Recent Progress**: Matrix operations now use BLAS acceleration<br/>
> **Performance Status**: 1160+ GFLOPS with Apple Accelerate backend working (measured on Apple M1 Macbook)<br/>
>
> See [Performance Results](#performance-notes) for detailed benchmarks.
## Overview
This experimental implementation aims to leverage Zig's unique advantages for systems programming to create a high-performance LLM inference engine:
- **Zero-cost abstractions** with compile-time optimization
- **Direct hardware access** for SIMD and platform-specific optimizations
- **Manual memory management** without garbage collection pauses
- **Single binary deployment** with no runtime dependencies
- **Cross-platform compilation** for multiple architectures
**🚀 BLAS Acceleration Achieved!** We've successfully integrated Apple Accelerate backend delivering **1000+ GFLOPS** performance - a **3000x speedup** over the initial naive implementation. Measured on an M1 Macbook.
**🔗 Related**: See the [main project README](../README.md) for architecture overview and vision.
## Project Structure
```
experimental/
├── build.zig # Build system configuration
├── build.zig.zon # Package dependencies
├── src/
│ ├── main.zig # HTTP server entry point
│ ├── core/ # Core ML components
│ │ ├── root.zig # Module exports
│ │ ├── tensor.zig # SIMD-optimized tensors
│ │ ├── model.zig # DeepSeek V3 model
│ │ ├── attention.zig # MLA attention mechanism
│ │ ├── moe.zig # Mixture of Experts
│ │ ├── tokenizer.zig # Text tokenization
│ │ ├── backend.zig # Backend abstraction
│ │ ├── memory.zig # Memory management
│ │ └── math/ # Math utilities
│ │ ├── root.zig # Math module exports
│ │ ├── simd.zig # SIMD operations
│ │ ├── activation.zig # Activation functions
│ │ └── rms_norm.zig # RMS normalization
│ ├── web/ # HTTP API layer
│ │ ├── root.zig # Web module exports
│ │ ├── server.zig # HTTP server (std.http)
│ │ ├── handlers.zig # Request handlers
│ │ ├── middleware.zig # CORS, auth, rate limiting
│ │ ├── websocket.zig # WebSocket support
│ │ ├── openai.zig # OpenAI API compatibility
│ │ ├── request.zig # Request wrapper
│ │ └── response.zig # Response wrapper
│ ├── backends/ # Compute backends
│ │ ├── cpu/ # CPU with SIMD
│ │ ├── metal/ # Apple Silicon
│ │ └── cuda/ # NVIDIA GPUs
│ └── wasm/
│ └── main.zig # WebAssembly entry point
├── bench/
│ └── main.zig # Performance benchmarks
└── README.md # This file
```
## Requirements
- **Zig 0.15.0-dev**
- Platform-specific requirements:
- **macOS**: Xcode Command Line Tools (for Metal backend)
- **Linux**: CUDA Toolkit (for CUDA backend, optional)
- **Windows**: CUDA Toolkit (for CUDA backend, optional)
## Quick Start
### Building
```bash
# Clone and navigate to experimental directory
cd experimental/
# Build the project
zig build
# Run the server
zig build run
# Run tests
zig build test
# Run benchmarks
zig build bench
# Build WebAssembly
zig build wasm
```
### Running the Server
```bash
# Start server on default port (8080)
./zig-out/bin/deepseek-v3-zig
# Custom configuration
./zig-out/bin/deepseek-v3-zig --port 3000 --backend metal --model ./path/to/model
```
### API Usage
The server exposes OpenAI-compatible endpoints:
```bash
# Chat completion
curl -X POST http://localhost:8080/v1/chat/completions \
-H "Content-Type: application/json" \
-d '{
"model": "deepseek-v3",
"messages": [{"role": "user", "content": "Hello!"}],
"max_tokens": 100
}'
# Health check
curl http://localhost:8080/health
# Model info
curl http://localhost:8080/v1/models
```
## Performance Features
### SIMD Optimizations
- **x86_64**: AVX2/AVX-512 vectorization for matrix operations
- **ARM64**: NEON SIMD for Apple Silicon optimization
- **Auto-vectorization**: Compiler-optimized loops with `@Vector` types
### Backend Support
| Backend | Status | Features |
|---------|--------|----------|
| **CPU** | ✅ Implemented | Multi-threaded, SIMD, cache-optimized |
| **Metal** | 🚧 In Progress | Apple Silicon GPU, unified memory |
| **CUDA** | 🚧 Planned | NVIDIA GPU, Tensor Cores |
| **WebGPU** | 📋 Future | Browser GPU acceleration |
### Memory Management
- **Arena allocators** for request-scoped memory
- **Memory pools** for tensor allocations
- **Zero-copy operations** where possible
- **Cache-friendly** data layouts
## Development Status
### ✅ Drafted
- [x] Project structure and build system
- [x] Core tensor operations with SIMD
- [x] HTTP server with OpenAI API compatibility
- [x] CPU backend with optimizations
- [x] Memory management utilities
- [x] Benchmark suite
### 🚧 In Progress
- [ ] DeepSeek V3 model architecture
- [ ] Multi-Head Latent Attention (MLA)
- [ ] Mixture of Experts (MoE) implementation
- [ ] Metal backend for Apple Silicon
- [ ] Model loading and weight management
### 📋 Planned
- [ ] CUDA backend for NVIDIA GPUs
- [ ] WebSocket streaming
- [ ] Model quantization (INT8, FP16)
- [ ] Flash Attention optimization
- [ ] Distributed inference
- [ ] Advanced sampling strategies
## Architecture Decisions
### Why Zig?
1. **Performance**: Zero-cost abstractions without runtime overhead
2. **Memory Safety**: Compile-time memory management without GC
3. **Simplicity**: Single binary deployment, cross-compilation
4. **Control**: Direct hardware access for optimization
### Design Principles
- **Modularity**: Clean separation between core, web, and backend layers
- **Performance**: SIMD-first design with cache-friendly algorithms
- **Compatibility**: OpenAI API compatibility for easy adoption
- **Extensibility**: Plugin architecture for new backends
## Contributing
This is an experimental project! Contributions are welcome:
1. **Core ML**: Implement transformer layers, attention mechanisms
2. **Backends**: Optimize CUDA/Metal compute kernels
3. **Performance**: Profile and optimize bottlenecks
4. **Testing**: Add comprehensive test coverage
5. **Documentation**: Improve setup and usage guides
### Development Setup
```bash
# Install Zig 0.15.0-dev
# https://ziglang.org/download/
# Clone repository
git clone [repository-url]
cd experimental/
# Run tests during development
zig build test --watch
# Format code
zig fmt src/
```
## Benchmarks
Run benchmarks to measure performance:
```bash
zig build bench
```
**Hardware Context**: Benchmarks run on Apple M1 MacBook Pro (MacBookPro17,1) with 16GB unified memory, Zig 0.15.0-dev.703+597dd328e, debug build.
Example output:
```
🚀 DeepZig V3 Performance Benchmarks
==========================================
🎯 DYNAMIC BENCHMARK SUMMARY
===============================
📊 Matrix Multiplication Performance:
• 256×256: 0.0 ms, 937 GFLOPS
• 512×512: 0.2 ms, 1084 GFLOPS
• 1024×1024: 2.1 ms, 1164 GFLOPS
• 2048×2048: 20.9 ms, 823 GFLOPS
🏆 Peak measured: 1164 GFLOPS at 1024×1024
🧮 BLAS Configuration:
• Backend: Apple Accelerate
• Theoretical peak: 2600 GFLOPS (estimated)
Tensor Operations:
• SIMD Addition: 3.5 GB/s
💾 Memory Performance:
• Copy Bandwidth: 20.9 GB/s
• Random Access Latency: 1.8 ns
🎯 Performance Assessment:
✅ Acceptable: BLAS delivering 1000+ GFLOPS
• Est. efficiency: 44% (vs theoretical peak)
Note: Benchmarked on Apple M1 MacBook Pro under heavy load
(should be significantly higher on a clean system).
```
**Performance Results** (Apple M1 MacBook Pro under heavy load):
- **Matrix 256×256**: 0.0ms/iter, **937 GFLOPS**
- **Matrix 512×512**: 0.2ms/iter, **1084 GFLOPS** (peak performance)
- **Matrix 1024×1024**: 2.1ms/iter, **1164 GFLOPS**
- **Matrix 2048×2048**: 20.9ms/iter, **823 GFLOPS**
**Performance Achievement**: From **6418ms naive****2.2ms BLAS** = **2900x speedup** on matrix operations
**System Status**:
-**BLAS Backend**: Apple Accelerate integration delivering acceptable performance
-**Peak Performance**: **1164 GFLOPS measured** (44% of theoretical maximum, impressive under load)
-**Memory Bandwidth**: 20.9 GB/s copying, well-optimized operations
-**Hardware Detection**: M-series Apple Silicon detection functional
## Known Issues
- **Model Loading**: Currently creates dummy models - real weight loading not implemented
- **Tokenizer**: Placeholder implementation - needs proper BPE tokenizer
- **WebSocket**: Basic structure only - streaming not implemented
- **Metal/CUDA**: Backend stubs only - GPU kernels not implemented
## License
This experimental implementation follows the same license as the original DeepSeek V3 project.
## Resources
- [Original DeepSeek V3 Paper](https://arxiv.org/abs/2412.19437)
- [Zig Language Documentation](https://ziglang.org/documentation/master/)
- [Zig Performance Guide](https://github.com/ziglang/zig/wiki/Performance)
- [SIMD in Zig](https://ziglang.org/documentation/master/#Vectors)
## Is This Ready for Production?
**No** - this is a research/development foundation. But it's **theoretical and compiles**:
- **What works now**: ✅ Compiles and runs with Zig 0.15.0-dev, HTTP server, tensor operations, SIMD math, benchmarks execute successfully
- **What's missing**: Optimized matrix operations, actual DeepSeek V3 model implementation
- **Timeline**: Foundation is **compiling**, model implementation is the next major milestone
## Comparison to Other Projects
| Project | Language | Status | Focus |
|---------|----------|--------|-------|
| **This** | Zig | Foundation + API | Web-first inference |
| llama.cpp | C++ | Production | CLI/library |
| Candle | Rust | Production | ML framework |
| ZML | Zig | Research | Low-level ML ops |
**Unique advantages**: Built-in web server, Zig's zero-cost abstractions, single binary deployment.
---
**⚡ Built with Zig for blazing fast LLM inference!**
## Performance Notes
**Current Status**: ✅ **BLAS integration working** - Apple Accelerate backend now functional in draft implementation.
**Performance Results** (Apple M1 MacBook Pro under heavy load):
- **Matrix 256×256**: 0.0ms/iter, **937 GFLOPS**
- **Matrix 512×512**: 0.2ms/iter, **1084 GFLOPS**
- **Matrix 1024×1024**: 2.1ms/iter, **1164 GFLOPS** (peak performance)
- **Matrix 2048×2048**: 20.9ms/iter, **823 GFLOPS**
**Performance Achievement**: From **6418ms naive****2.1ms BLAS** = ~**3000x speedup** on matrix operations.
**System Status**:
-**BLAS Backend**: Apple Accelerate integration working
-**Peak Performance**: **1164 GFLOPS measured** (44% of theoretical maximum)
-**Memory Bandwidth**: 20.9 GB/s copying, well-optimized operations
-**Hardware Detection**: M-series Apple Silicon detection functional
**Next Steps**: Focus on transformer architecture, attention mechanisms, and model-specific optimizations for the draft DeepSeek V3 implementation.