mirror of
https://github.com/deepseek-ai/DeepSeek-V3.git
synced 2025-06-20 08:33:47 -04:00
222 lines
8.8 KiB
Markdown
222 lines
8.8 KiB
Markdown
<div align="center">
|
|
<img src="./dzv3-logo.svg" alt="DeepSeek V3 in Zig" width="100%" />
|
|
</div>
|
|
<hr>
|
|
<div align="center" style="line-height: 1.5;">
|
|
<a href="https://ziglang.org/"><img src="https://img.shields.io/badge/Language-Zig-F7A41D?style=for-the-badge&logo=zig&logoColor=white" alt="Language: Zig"></a>
|
|
<a href="LICENSE-CODE"><img src="https://img.shields.io/badge/License-DSV3-blue.svg?style=for-the-badge" alt="License: DeepSeek"></a>
|
|
<a href="#status"><img src="https://img.shields.io/badge/Status-Proposal-orange?style=for-the-badge" alt="Status: Proposal"></a>
|
|
<br>
|
|
<a href="#why-propose-deepseek-v3-in-zig"><img src="https://img.shields.io/badge/Performance-High_Efficiency-44CC11?style=for-the-badge" alt="Performance: High Efficiency"></a>
|
|
<a href="#platform-specific-optimizations"><img src="https://img.shields.io/badge/Platform-Cross_Platform-5A6AB1?style=for-the-badge" alt="Platform: Cross Platform"></a>
|
|
<br>
|
|
<a href="#core-system"><img src="https://img.shields.io/badge/Feature-SIMD_Optimized-1DA1F2?style=for-the-badge" alt="Feature: SIMD Optimized"></a>
|
|
<a href="#model-architecture"><img src="https://img.shields.io/badge/Architecture-MoE-F94877?style=for-the-badge" alt="Architecture: MoE"></a>
|
|
<a href="#computation-backend"><img src="https://img.shields.io/badge/Backend-Customizable-6236FF?style=for-the-badge" alt="Backend: Customizable"></a>
|
|
</div>
|
|
<hr />
|
|
|
|
<h1 align="center"> DeepZig V3: A High-Performance LLM Architecture</h1>
|
|
|
|
## Overview
|
|
|
|
A proposal for implementing DeepSeek V3 in Zig to create a high-performance, web-ready LLM inference engine. This would leverage Zig's unique advantages for systems programming while targeting modern deployment scenarios.
|
|
|
|
## Why This Matters
|
|
|
|
Current LLM inference is dominated by Python/PyTorch, which introduces:
|
|
- **Garbage collection pauses** during generation
|
|
- **Runtime overhead** from dynamic dispatch
|
|
- **Complex deployment** with heavy runtimes
|
|
- **Platform lock-in** due to dependency complexity
|
|
|
|
## Why Zig?
|
|
|
|
**Performance**: Zero-cost abstractions, compile-time optimization, direct hardware access
|
|
**Simplicity**: Single static binary, no runtime dependencies, cross-compilation built-in
|
|
**Web-First**: Native HTTP server, WebAssembly compilation, efficient memory management
|
|
|
|
## Proposed Architecture
|
|
|
|
```
|
|
┌─────────────────┐ ┌──────────────────┐ ┌─────────────────┐
|
|
│ Web Layer │ │ Core Engine │ │ Backends │
|
|
│ │ │ │ │ │
|
|
│ ├─ HTTP API │◄──►│ ├─ Transformer │◄──►│ ├─ CPU (SIMD) │
|
|
│ ├─ WebSocket │ │ ├─ Attention │ │ ├─ Metal (macOS)│
|
|
│ ├─ Rate Limit │ │ ├─ MoE Routing │ │ ├─ CUDA (Linux) │
|
|
│ └─ Auth │ │ └─ Tokenizer │ │ └─ WebGPU │
|
|
└─────────────────┘ └──────────────────┘ └─────────────────┘
|
|
```
|
|
|
|
## Proposed Web API
|
|
|
|
### Target Endpoints
|
|
- `POST /v1/chat/completions` - OpenAI-compatible chat API
|
|
- `POST /v1/completions` - Text completion
|
|
- `GET /v1/models` - List available models
|
|
- `GET /health` - Service health check
|
|
- `WebSocket /ws` - Streaming inference
|
|
|
|
### Deployment Vision
|
|
- **Docker containers** for cloud deployment
|
|
- **Static binaries** for edge devices
|
|
- **WebAssembly** for browser inference
|
|
- **Serverless functions** for auto-scaling
|
|
|
|
## Implementation Plan
|
|
|
|
### Phase 1: Foundation
|
|
- [ ] Set up Zig project structure
|
|
- [ ] Implement basic tensor operations with SIMD
|
|
- [ ] Create memory management system (arena allocators)
|
|
- [ ] Build HTTP server framework
|
|
|
|
### Phase 2: Core Model
|
|
- [ ] Implement transformer layers
|
|
- [ ] Add Multi-Head Latent Attention (MLA)
|
|
- [ ] Build Mixture of Experts (MoE) routing
|
|
- [ ] Create tokenizer integration
|
|
|
|
### Phase 3: Backends
|
|
- [ ] Optimize CPU backend with AVX/NEON
|
|
- [ ] Integrate Metal for Apple Silicon
|
|
- [ ] Add CUDA support for NVIDIA GPUs
|
|
- [ ] Implement WebGPU for browsers
|
|
|
|
### Phase 4: Web Integration
|
|
- [ ] Complete HTTP API implementation
|
|
- [ ] Add WebSocket streaming
|
|
- [ ] Build authentication/rate limiting
|
|
- [ ] Create deployment tooling
|
|
|
|
## Expected Benefits
|
|
|
|
| Aspect | Current (PyTorch) | Proposed (Zig) |
|
|
|--------|------------------|----------------|
|
|
| Cold start | 10-30s | **< 2s** |
|
|
| Memory usage | 20-40GB | **< 16GB** |
|
|
| Dependencies | ~2GB runtime | **Single binary** |
|
|
| Deployment | Complex | **Copy & run** |
|
|
|
|
## Technical Challenges
|
|
|
|
- **Model Complexity**: DeepSeek V3's MoE architecture requires careful memory management
|
|
- **Backend Integration**: Need efficient FFI to CUDA/Metal while maintaining performance
|
|
- **Web Scale**: Handle concurrent requests without blocking inference
|
|
- **Accuracy**: Match PyTorch numerical precision
|
|
|
|
## Platform-Specific Opportunities
|
|
|
|
### Apple Silicon (M-Series)
|
|
- **Metal Performance Shaders** integration for matrix operations
|
|
- **AMX instruction set** access for accelerated linear algebra
|
|
- **Unified memory architecture** exploitation for zero-copy transfers
|
|
- **Power efficiency tuning** across P and E cores
|
|
|
|
### x86_64 Architecture
|
|
- **AVX-512 vectorization** with masked operations
|
|
- **Cache-friendly memory layouts** for L1/L2/L3 optimization
|
|
- **NUMA-aware allocation** and thread assignment
|
|
- **Dynamic dispatch** based on runtime CPU feature detection
|
|
|
|
### NVIDIA GPUs
|
|
- **CUDA integration** via efficient FFI bindings
|
|
- **Tensor Core utilization** for mixed-precision operations
|
|
- **Custom kernels** for attention mechanisms
|
|
- **Memory pooling** for reduced allocation overhead
|
|
|
|
## Getting Started
|
|
|
|
**Current Status**: This repository contains the original Python DeepSeek V3 implementation. The Zig implementation is proposed future work.
|
|
|
|
### For the Current Python Implementation:
|
|
```bash
|
|
# Clone this repository
|
|
git clone https://github.com/[current-repo-path]
|
|
cd DeepSeek-V3-Zig
|
|
|
|
# Follow existing Python setup instructions
|
|
# (see original DeepSeek V3 documentation)
|
|
```
|
|
|
|
### For the Proposed Zig Implementation:
|
|
```bash
|
|
# This would be the future workflow once implemented:
|
|
|
|
# 1. Set up new Zig project structure
|
|
zig init-exe deepseek-v3-zig
|
|
|
|
# 2. Implement core components
|
|
# - Tensor operations with SIMD
|
|
# - HTTP server framework
|
|
# - Model architecture
|
|
|
|
# 3. Test and benchmark
|
|
zig build test
|
|
zig build bench
|
|
|
|
# 4. Run web server
|
|
zig build run -- --port 8080
|
|
```
|
|
|
|
**Want to contribute to making this real?** See [Seeking Contributors](#seeking-contributors) below.
|
|
|
|
## Development Approach
|
|
|
|
Following established [Zig patterns](https://github.com/SuperAuguste/zig-patterns):
|
|
- **Arena allocators** for request-scoped memory
|
|
- **Error unions** for explicit error handling
|
|
- **Comptime generics** for zero-cost abstractions
|
|
- **SIMD vectors** for numerical computation
|
|
|
|
Reference: [Zig Cookbook](https://zigcc.github.io/zig-cookbook/) for implementation patterns.
|
|
|
|
## Seeking Contributors
|
|
|
|
This is an ambitious project that would benefit from expertise in:
|
|
- **Zig systems programming**
|
|
- **GPU kernel optimization** (CUDA/Metal)
|
|
- **ML model implementation**
|
|
- **Web server development**
|
|
- **Performance optimization**
|
|
- **Hardware-software co-design**
|
|
- **Novel inference techniques** (Speculative decoding, quantization)
|
|
|
|
## Project Timeline
|
|
|
|
- Foundation and basic tensor ops
|
|
- Core transformer implementation
|
|
- Backend optimization and web API
|
|
- Testing, benchmarking, deployment tools
|
|
|
|
## Key Questions
|
|
|
|
**Q: Why not just optimize PyTorch?**
|
|
A: PyTorch's Python overhead and GC pauses are fundamental limitations. Zig offers zero-cost abstractions, superior error handling, and deterministic performance.
|
|
|
|
**Q: How will this compare to llama.cpp?**
|
|
A: Similar performance goals, but with built-in web API, better memory management, and focus on DeepSeek V3's specific MoE architecture.
|
|
|
|
**Q: What about ONNX/TensorRT/ZML etc?**
|
|
A: Those are inference runtimes, not development frameworks / LLM frameworks. This project enables rapid iteration and custom optimization for research.
|
|
|
|
---
|
|
|
|
**Status**: 🎯 Seeking feedback & idea expansion
|
|
**Vision**: Foundation for advanced AI reasoning research
|
|
|
|
## References
|
|
|
|
- [DeepSeek V3 Paper](https://arxiv.org/abs/2412.19437) - Original model architecture
|
|
- [Zig Language](https://ziglang.org/) - Language documentation
|
|
- [Awesome Zig](https://github.com/C-BJ/awesome-zig) - Community resources
|
|
- [Zig Patterns](https://github.com/SuperAuguste/zig-patterns) - Common idioms
|
|
- [ZML](https://github.com/zml/zml) - Zig Inference Stack
|
|
- [LLaMA.cpp](https://github.com/ggerganov/llama.cpp) - C++ Inference Engine
|
|
- [DeepZig Consciousness](https://github.com/Triex/DeepZig-Consciousness) - Research goal/end game
|
|
|
|
---
|
|
|
|
- **Status**: 🎯 Seeking feedback on initial idea
|
|
- **Target**: Production-ready LLM inference in Zig |