DeepSeek-V3/README.md
2025-06-04 11:41:41 +10:00

201 lines
7.8 KiB
Markdown

<div align="center">
<img src="./dzv3-logo.svg" alt="DeepSeek V3 in Zig" width="100%" />
</div>
<hr>
<div align="center" style="line-height: 1.5;">
<a href="https://ziglang.org/"><img src="https://img.shields.io/badge/Language-Zig-F7A41D?style=for-the-badge&logo=zig&logoColor=white" alt="Language: Zig"></a>
<a href="LICENSE-CODE"><img src="https://img.shields.io/badge/License-DSV3-blue.svg?style=for-the-badge" alt="License: DeepSeek"></a>
<a href="#status"><img src="https://img.shields.io/badge/Status-Proposal-orange?style=for-the-badge" alt="Status: Proposal"></a>
<br>
<a href="#why-propose-deepseek-v3-in-zig"><img src="https://img.shields.io/badge/Performance-High_Efficiency-44CC11?style=for-the-badge" alt="Performance: High Efficiency"></a>
<a href="#platform-specific-optimizations"><img src="https://img.shields.io/badge/Platform-Cross_Platform-5A6AB1?style=for-the-badge" alt="Platform: Cross Platform"></a>
<br>
<a href="#core-system"><img src="https://img.shields.io/badge/Feature-SIMD_Optimized-1DA1F2?style=for-the-badge" alt="Feature: SIMD Optimized"></a>
<a href="#model-architecture"><img src="https://img.shields.io/badge/Architecture-MoE-F94877?style=for-the-badge" alt="Architecture: MoE"></a>
<a href="#computation-backend"><img src="https://img.shields.io/badge/Backend-Customizable-6236FF?style=for-the-badge" alt="Backend: Customizable"></a>
</div>
<hr />
<h1 align="center"> DeepZig V3: A High-Performance LLM Architecture</h1>
## Overview
A proposal for implementing DeepSeek V3 in Zig to create a high-performance, web-ready LLM inference engine. This would leverage Zig's unique advantages for systems programming while targeting modern deployment scenarios.
## Why This Matters
Current LLM inference is dominated by Python/PyTorch, which introduces:
- **Garbage collection pauses** during generation
- **Runtime overhead** from dynamic dispatch
- **Complex deployment** with heavy runtimes
- **Platform lock-in** due to dependency complexity
## The Zig Advantage
**Performance**: Zero-cost abstractions, compile-time optimization, direct hardware access
**Simplicity**: Single static binary, no runtime dependencies, cross-compilation built-in
**Web-First**: Native HTTP server, WebAssembly compilation, efficient memory management
## Proposed Architecture
```
┌─────────────────┐ ┌──────────────────┐ ┌─────────────────┐
│ Web Layer │ │ Core Engine │ │ Backends │
│ │ │ │ │ │
│ ├─ HTTP API │◄──►│ ├─ Transformer │◄──►│ ├─ CPU (SIMD) │
│ ├─ WebSocket │ │ ├─ Attention │ │ ├─ Metal (macOS)│
│ ├─ Rate Limit │ │ ├─ MoE Routing │ │ ├─ CUDA (Linux) │
│ └─ Auth │ │ └─ Tokenizer │ │ └─ WebGPU │
└─────────────────┘ └──────────────────┘ └─────────────────┘
```
## Proposed Web API
### Target Endpoints
- `POST /v1/chat/completions` - OpenAI-compatible chat API
- `POST /v1/completions` - Text completion
- `GET /v1/models` - List available models
- `GET /health` - Service health check
- `WebSocket /ws` - Streaming inference
### Deployment Vision
- **Docker containers** for cloud deployment
- **Static binaries** for edge devices
- **WebAssembly** for browser inference
- **Serverless functions** for auto-scaling
## Implementation Plan
### Phase 1: Foundation
- [ ] Set up Zig project structure
- [ ] Implement basic tensor operations with SIMD
- [ ] Create memory management system (arena allocators)
- [ ] Build HTTP server framework
### Phase 2: Core Model
- [ ] Implement transformer layers
- [ ] Add Multi-Head Latent Attention (MLA)
- [ ] Build Mixture of Experts (MoE) routing
- [ ] Create tokenizer integration
### Phase 3: Backends
- [ ] Optimize CPU backend with AVX/NEON
- [ ] Integrate Metal for Apple Silicon
- [ ] Add CUDA support for NVIDIA GPUs
- [ ] Implement WebGPU for browsers
### Phase 4: Web Integration
- [ ] Complete HTTP API implementation
- [ ] Add WebSocket streaming
- [ ] Build authentication/rate limiting
- [ ] Create deployment tooling
## Expected Benefits
| Aspect | Current (PyTorch) | Proposed (Zig) |
|--------|------------------|----------------|
| Cold start | 10-30s | **< 2s** |
| Memory usage | 20-40GB | **< 16GB** |
| Dependencies | ~2GB runtime | **Single binary** |
| Deployment | Complex | **Copy & run** |
## Technical Challenges
- **Model Complexity**: DeepSeek V3's MoE architecture requires careful memory management
- **Backend Integration**: Need efficient FFI to CUDA/Metal while maintaining performance
- **Web Scale**: Handle concurrent requests without blocking inference
- **Accuracy**: Match PyTorch numerical precision
## Platform-Specific Opportunities
### Apple Silicon (M-Series)
- **Metal Performance Shaders** integration for matrix operations
- **AMX instruction set** access for accelerated linear algebra
- **Unified memory architecture** exploitation for zero-copy transfers
- **Power efficiency tuning** across P and E cores
### x86_64 Architecture
- **AVX-512 vectorization** with masked operations
- **Cache-friendly memory layouts** for L1/L2/L3 optimization
- **NUMA-aware allocation** and thread assignment
- **Dynamic dispatch** based on runtime CPU feature detection
### NVIDIA GPUs
- **CUDA integration** via efficient FFI bindings
- **Tensor Core utilization** for mixed-precision operations
- **Custom kernels** for attention mechanisms
- **Memory pooling** for reduced allocation overhead
## Getting Started
**Current Status**: This repository contains the original Python DeepSeek V3 implementation. The Zig implementation is proposed future work.
### For the Current Python Implementation:
```bash
# Clone this repository
git clone https://github.com/[current-repo-path]
cd DeepSeek-V3-Zig
# Follow existing Python setup instructions
# (see original DeepSeek V3 documentation)
```
### For the Proposed Zig Implementation:
```bash
# This would be the future workflow once implemented:
# 1. Set up new Zig project structure
zig init-exe deepseek-v3-zig
# 2. Implement core components
# - Tensor operations with SIMD
# - HTTP server framework
# - Model architecture
# 3. Test and benchmark
zig build test
zig build bench
# 4. Run web server
zig build run -- --port 8080
```
**Want to contribute to making this real?** See [Seeking Contributors](#seeking-contributors) below.
## Development Approach
Following established [Zig patterns](https://github.com/SuperAuguste/zig-patterns):
- **Arena allocators** for request-scoped memory
- **Error unions** for explicit error handling
- **Comptime generics** for zero-cost abstractions
- **SIMD vectors** for numerical computation
Reference: [Zig Cookbook](https://zigcc.github.io/zig-cookbook/) for implementation patterns.
## Seeking Contributors
This is an ambitious project that would benefit from expertise in:
- **Zig systems programming**
- **GPU kernel optimization** (CUDA/Metal)
- **ML model implementation**
- **Web server development**
- **Performance optimization**
## Project Timeline
- Foundation and basic tensor ops
- Core transformer implementation
- Backend optimization and web API
- Testing, benchmarking, deployment tools
## References
- [DeepSeek V3 Paper](https://arxiv.org/abs/2412.19437) - Original model architecture
- [Zig Language](https://ziglang.org/) - Language documentation
- [Awesome Zig](https://github.com/C-BJ/awesome-zig) - Community resources
- [Zig Patterns](https://github.com/SuperAuguste/zig-patterns) - Common idioms
---
- **Status**: 🎯 Seeking feedback on initial idea
- **Target**: Production-ready LLM inference in Zig