mirror of
https://github.com/deepseek-ai/DeepSeek-V3.git
synced 2025-07-05 07:51:38 -04:00
232 lines
11 KiB
Markdown
232 lines
11 KiB
Markdown
<div align="center">
|
||
<img src="./dzv3-logo.svg" alt="DeepSeek V3 in Zig" width="100%" />
|
||
</div>
|
||
<hr>
|
||
<div align="center" style="line-height: 1.5;">
|
||
<a href="https://ziglang.org/"><img src="https://img.shields.io/badge/Language-Zig-F7A41D?style=for-the-badge&logo=zig&logoColor=white" alt="Language: Zig"></a>
|
||
<a href="LICENSE-CODE"><img src="https://img.shields.io/badge/License-DSV3-blue.svg?style=for-the-badge" alt="License: DeepSeek"></a>
|
||
<a href="#status"><img src="https://img.shields.io/badge/Status-Proposal-orange?style=for-the-badge" alt="Status: Proposal"></a>
|
||
<br>
|
||
<a href="#why-propose-deepseek-v3-in-zig"><img src="https://img.shields.io/badge/Performance-High_Efficiency-44CC11?style=for-the-badge" alt="Performance: High Efficiency"></a>
|
||
<a href="#platform-specific-optimizations"><img src="https://img.shields.io/badge/Platform-Cross_Platform-5A6AB1?style=for-the-badge" alt="Platform: Cross Platform"></a>
|
||
<br>
|
||
<a href="#core-system"><img src="https://img.shields.io/badge/Feature-SIMD_Optimized-1DA1F2?style=for-the-badge" alt="Feature: SIMD Optimized"></a>
|
||
<a href="#model-architecture"><img src="https://img.shields.io/badge/Architecture-MoE-F94877?style=for-the-badge" alt="Architecture: MoE"></a>
|
||
<a href="#computation-backend"><img src="https://img.shields.io/badge/Backend-Customizable-6236FF?style=for-the-badge" alt="Backend: Customizable"></a>
|
||
</div>
|
||
<hr />
|
||
|
||
# DeepZig V3: A High-Performance LLM Architecture
|
||
|
||
## Overview
|
||
|
||
A **DRAFT proposal & foundation** for implementing DeepSeek V3 in Zig to create a high-performance, web-ready LLM inference engine. This leverages Zig's unique advantages for systems programming while targeting modern deployment scenarios.
|
||
|
||
**⚠️ Status: EXPERIMENTAL DRAFT** ✅ **Foundation compiles with Zig 0.15.0-dev**, including:
|
||
- ✅ HTTP server framework (basic structure)
|
||
- ✅ SIMD-optimized tensor operations (draft implementation)
|
||
- ✅ Cross-platform backend architecture
|
||
- ✅ Initial memory management
|
||
- ✅ **Apple Silicon M-series detection** (hardware detection via sysctl)
|
||
- ✅ Comprehensive build system draft
|
||
- ✅ **BLAS integration working** (Apple Accelerate backend functional)
|
||
- ✅ **Improved matrix operations** (1000+ GFLOPS performance on an M1 Macbook)
|
||
- ⚠️ **NOT PRODUCTION READY** - Draft implementation for research/development
|
||
|
||
**Performance Update**: ~~Current naive algorithms are ~1000x slower than optimized BLAS~~ **BLAS integration now functional.** Matrix multiplication: **2.1ms for 1024×1024** at **1000+ GFLOPS** on an M1 Macbook. This represents significant improvement over our initial naive implementation. See [experimental benchmarks](experimental/README.md#benchmarks) for detailed performance data.
|
||
|
||
## Why This Matters
|
||
|
||
Current LLM inference is dominated by Python/PyTorch, which introduces:
|
||
- **Garbage collection pauses** during generation
|
||
- **Runtime overhead** from dynamic dispatch
|
||
- **Complex deployment** with heavy runtimes
|
||
- **Platform lock-in** due to dependency complexity
|
||
|
||
**Progress Update**: Our draft implementation now includes BLAS integration delivering improved matrix operation performance with Apple Accelerate backend.
|
||
|
||
## Expected Benefits vs Current Reality
|
||
|
||
| Aspect | Current (PyTorch) | Target (Zig) | **Current Achievement** |
|
||
|--------|------------------|--------------|-------------------------|
|
||
| Cold start | 10-30s | **< 2s** | *Not measured* |
|
||
| Memory usage | 20-40GB | **< 16GB** | *16GB+ for basic ops* |
|
||
| Dependencies | ~2GB runtime | **Single binary** | ✅ **Single binary** |
|
||
| Deployment | Complex | **Copy & run** | ✅ **Copy & run** |
|
||
| Matrix Mul (1024×1024) | ~1ms (optimized) | **< 1ms** | ✅ **2.1ms (1000+ GFLOPS/M1 Macbook)** |
|
||
|
||
*See [experimental benchmarks](experimental/README.md#benchmarks) for current performance measurements.*
|
||
|
||
## Why Zig?
|
||
|
||
**Performance**: Zero-cost abstractions, compile-time optimization, direct hardware access<br/>
|
||
**Simplicity**: Single static binary, no runtime dependencies, cross-compilation built-in<br/>
|
||
**Web-First**: Native HTTP server, WebAssembly compilation, efficient memory management
|
||
|
||
## Proposed Architecture
|
||
|
||
```
|
||
┌─────────────────┐ ┌──────────────────┐ ┌─────────────────┐
|
||
│ Web Layer │ │ Core Engine │ │ Backends │
|
||
│ │ │ │ │ │
|
||
│ ├─ HTTP API │◄──►│ ├─ Transformer │◄──►│ ├─ CPU (SIMD) │
|
||
│ ├─ WebSocket │ │ ├─ Attention │ │ ├─ Metal (macOS)│
|
||
│ ├─ Rate Limit │ │ ├─ MoE Routing │ │ ├─ CUDA (Linux) │
|
||
│ └─ Auth │ │ └─ Tokenizer │ │ └─ WebGPU │
|
||
└─────────────────┘ └──────────────────┘ └─────────────────┘
|
||
```
|
||
|
||
## Draft Web API Framework
|
||
|
||
### Planned Endpoints (Basic Structure Implemented)
|
||
- `POST /v1/chat/completions` - OpenAI-compatible chat API
|
||
- `POST /v1/completions` - Text completion
|
||
- `GET /v1/models` - List available models
|
||
- `GET /health` - Service health check
|
||
- `WebSocket /ws` - Streaming inference (planned)
|
||
|
||
### Deployment Vision
|
||
- **Static binaries** - Single file deployment, no dependencies
|
||
- **Direct VPS deployment** - Copy binary and run with systemd
|
||
- **Edge devices** - ARM/RISC-V cross-compilation
|
||
- **Serverless functions** - Minimal cold start with static linking
|
||
- **WebAssembly** - Browser inference without additional runtime
|
||
|
||
## Implementation Plan Status
|
||
|
||
### Phase 1: Foundation ✅ **DRAFT COMPLETE**
|
||
- [x] Set up Zig project structure
|
||
- [x] Implement basic tensor operations with SIMD
|
||
- [x] Create memory management system (arena allocators)
|
||
- [x] Build HTTP server framework
|
||
- [x] **Apple Silicon detection via sysctl calls**
|
||
- [x] **Updated to Zig 0.15.0-dev - compiles cleanly**
|
||
- [x] **Benchmark suite** showing current performance
|
||
- [x] **BLAS integration working** - Apple Accelerate backend functional
|
||
- [x] **Improved matrix performance** - 1000+ GFLOPS operations on an M1 Macbook
|
||
|
||
*📈 Performance improvement achieved - BLAS acceleration now working*
|
||
|
||
### Phase 2: Core Model (IN PROGRESS)
|
||
- [ ] Implement transformer layers
|
||
- [ ] Add Multi-Head Latent Attention (MLA)
|
||
- [ ] Build Mixture of Experts (MoE) routing
|
||
- [ ] Create tokenizer integration
|
||
|
||
### Phase 3: Backends (PLANNED)
|
||
- [ ] Optimize CPU backend with AVX/NEON
|
||
- [ ] Integrate Metal for Apple Silicon
|
||
- [ ] Add CUDA support for NVIDIA GPUs
|
||
- [ ] Implement WebGPU for browsers
|
||
|
||
### Phase 4: Web Integration (DRAFT STRUCTURE)
|
||
- [x] Complete HTTP API implementation (basic structure)
|
||
- [ ] Add WebSocket streaming
|
||
- [ ] Build authentication/rate limiting
|
||
- [ ] Create deployment tooling
|
||
|
||
## Technical Challenges
|
||
|
||
- **Model Complexity**: DeepSeek V3's MoE architecture requires careful memory management
|
||
- **Backend Integration**: Need efficient FFI to CUDA/Metal while maintaining performance
|
||
- **Web Scale**: Handle concurrent requests without blocking inference
|
||
- **Accuracy**: Match PyTorch numerical precision
|
||
- **Performance**: Matrix operations now use BLAS acceleration - focus shifts to model architecture optimisation
|
||
|
||
## Platform-Specific Opportunities
|
||
|
||
### Apple Silicon (M-Series) ✅ **Draft Detection Implemented**
|
||
- **Metal Performance Shaders** integration for matrix operations
|
||
- **AMX instruction set** access for accelerated linear algebra
|
||
- **Unified memory architecture** exploitation for zero-copy transfers
|
||
- **Power efficiency tuning** across P and E cores
|
||
- **✅ Proper M1/M2/M3/M4 detection** via system calls
|
||
|
||
*Current status: Hardware detection working, GPU acceleration not yet implemented.*
|
||
|
||
### x86_64 Architecture
|
||
- **AVX-512 vectorization** with masked operations
|
||
- **Cache-friendly memory layouts** for L1/L2/L3 optimization
|
||
- **NUMA-aware allocation** and thread assignment
|
||
- **Dynamic dispatch** based on runtime CPU feature detection
|
||
|
||
### NVIDIA GPUs
|
||
- **CUDA integration** via efficient FFI bindings
|
||
- **Tensor Core utilization** for mixed-precision operations
|
||
- **Custom kernels** for attention mechanisms
|
||
- **Memory pooling** for reduced allocation overhead
|
||
|
||
## Getting Started
|
||
|
||
**Current Status**: This repository contains a **DRAFT EXPERIMENTAL** Zig implementation foundation.
|
||
|
||
### For the Current Zig Implementation:
|
||
```bash
|
||
# Clone this repository
|
||
git clone https://github.com/Triex/DeepZig-V3
|
||
cd DeepSeek-V3-Zig/experimental
|
||
|
||
# Build and test the foundation
|
||
zig build
|
||
|
||
# Run the HTTP server (basic structure)
|
||
zig build run -- --port 8080
|
||
|
||
# Run benchmarks (see actual performance)
|
||
zig build bench
|
||
|
||
# Test Apple Silicon detection
|
||
zig build-exe src/test_m_series.zig -I src -lc -framework Metal -framework Foundation
|
||
./test_m_series
|
||
```
|
||
|
||
**📊 Performance Reality Check**: See [experimental/README.md](experimental/README.md) for actual benchmark results showing current performance limitations and optimisation opportunities.
|
||
|
||
## Development Approach
|
||
|
||
Following established [Zig patterns](https://github.com/SuperAuguste/zig-patterns):
|
||
- **Arena allocators** for request-scoped memory
|
||
- **Error unions** for explicit error handling
|
||
- **Comptime generics** for zero-cost abstractions
|
||
- **SIMD vectors** for numerical computation
|
||
|
||
Reference: [Zig Cookbook](https://zigcc.github.io/zig-cookbook/) for implementation patterns.
|
||
|
||
## Seeking Contributors
|
||
|
||
This is an ambitious **DRAFT project** that would benefit from expertise in:
|
||
- **Performance optimization** (focus on transformer and attention mechanisms)
|
||
- **Zig systems programming**
|
||
- **GPU kernel optimization** (CUDA/Metal)
|
||
- **ML model implementation**
|
||
- **Web server development**
|
||
- **Hardware-software co-design**
|
||
- **Novel inference techniques** (Speculative decoding, quantization)
|
||
|
||
## Current Limitations & Next Steps
|
||
|
||
**🚧 What's Working**: ✅ Compiles, runs, **BLAS acceleration functional**
|
||
**⚠️ What's Missing**: Robust flows, actual DeepSeek V3 model implementation
|
||
**📊 Performance Status**: ✅ **Matrix operations improved** (BLAS working)
|
||
**🎯 Next Priority**: DeepSeek V3 transformer architecture and attention mechanisms
|
||
|
||
See [experimental implementation](experimental/) for technical details and current benchmarks.
|
||
|
||
## References
|
||
|
||
- [DeepZig V3 (Experimental Implementation)](experimental/) - **Current working code**
|
||
- [DeepSeek V3 Paper](https://arxiv.org/abs/2412.19437) - Original model architecture
|
||
- [Zig Language](https://ziglang.org/) - Language documentation
|
||
- [Awesome Zig](https://github.com/C-BJ/awesome-zig) - Community resources
|
||
- [Zig Patterns](https://github.com/SuperAuguste/zig-patterns) - Common idioms
|
||
- [ZML](https://github.com/zml/zml) - Zig Inference Stack
|
||
- [LLaMA.cpp](https://github.com/ggerganov/llama.cpp) - C++ Inference Engine
|
||
- [DeepZig Consciousness](https://github.com/Triex/DeepZig-Consciousness) - Research goal/end game
|
||
|
||
---
|
||
|
||
**Status**: 🎯 **EXPERIMENTAL DRAFT** - Foundation compiles and runs basic operations ([see benchmarks](experimental/README.md#benchmarks))<br/>
|
||
**Vision**: Foundation for advanced AI reasoning research
|
||
|
||
**⚠️ Important**: This is a **research/development foundation** with draft/base implementations. Not ready for production use.
|