🚀 DeepSeek-V3: The Future of AI is Here
📊 Model at a Glance
🔥 Metric |
💎 Value |
🎯 Description |
🧠 Total Parameters |
671B |
Massive scale for unprecedented capabilities |
⚡ Activated Parameters |
37B |
Efficient MoE activation per token |
📝 Context Length |
128K |
Extended context for complex tasks |
🎓 Training Tokens |
14.8T |
Diverse, high-quality training data |
⏱️ Training Time |
2.788M H800 GPU Hours |
Remarkably efficient training |
🏆 MATH-500 Score |
90.2% |
State-of-the-art mathematical reasoning |
🌟 Revolutionary Features
🚀 DeepSeek-V3 Architecture Overview
│
├── 🧠 Innovative Architecture
│ ├── 🔄 Auxiliary-Loss-Free Load Balancing
│ ├── 🎲 Multi-Token Prediction (MTP)
│ └── 🏗️ Multi-Head Latent Attention
│
├── ⚡ Training Efficiency
│ ├── 🔢 FP8 Mixed Precision Training
│ ├── 📡 Computation-Communication Overlap
│ └── 💎 Zero Loss Spikes/Rollbacks
│
└── 🎯 Superior Performance
├── 🧮 Mathematics Excellence
├── 💻 Code Generation Mastery
└── 🤔 Advanced Reasoning
🏆 Performance Benchmarks
📚 Academic Excellence
🎯 Benchmark |
🥈 DeepSeek-V2 |
🥉 Qwen2.5 72B |
🥉 LLaMA3.1 405B |
🥇 DeepSeek-V3 |
📖 MMLU (Accuracy) |
78.4% |
85.0% |
84.4% |
🏆 87.1% |
🧮 MATH (Exact Match) |
43.4% |
54.4% |
49.0% |
🏆 61.6% |
🧠 BBH (Exact Match) |
78.8% |
79.8% |
82.9% |
🏆 87.5% |
📊 DROP (F1 Score) |
80.4% |
80.6% |
86.0% |
🏆 89.0% |
💻 Code Generation Mastery
🎯 Benchmark |
🥈 DeepSeek-V2 |
🥉 Qwen2.5 72B |
🥉 LLaMA3.1 405B |
🥇 DeepSeek-V3 |
👨💻 HumanEval (Pass@1) |
43.3% |
53.0% |
54.9% |
🏆 65.2% |
🔧 MBPP (Pass@1) |
65.0% |
72.6% |
68.4% |
🏆 75.4% |
🏃♂️ LiveCodeBench (Pass@1) |
11.6% |
12.9% |
15.5% |
🏆 19.4% |
🎭 Chat Model Excellence
🎯 Benchmark |
🤖 GPT-4o |
🎭 Claude-3.5-Sonnet |
🦙 LLaMA3.1 405B |
🥇 DeepSeek-V3 |
🏟️ Arena-Hard |
80.4 |
85.2 |
69.3 |
🏆 85.5 |
🦙 AlpacaEval 2.0 |
51.1% |
52.0% |
40.5% |
🏆 70.0% |
📐 AIME 2024 |
9.3% |
16.0% |
23.3% |
🏆 39.2% |
🧮 MATH-500 |
74.6% |
78.3% |
73.8% |
🏆 90.2% |
📦 Model Downloads
🎯 Choose Your Model
🤖 Model |
📊 Parameters |
🔗 Download |
⭐ Use Case |
🔬 DeepSeek-V3-Base |
671B (37B active) |
 |
Research & Fine-tuning |
💬 DeepSeek-V3-Chat |
671B (37B active) |
 |
Conversations & Applications |
🌐 Try Online

💡 Experience the power of DeepSeek-V3 without any setup!
🚀 Local Deployment Options
🔥 Recommended Frameworks
🛠️ Framework |
💫 Features |
🎯 Best For |
📱 Status |
🌊 SGLang |
MLA optimizations, FP8, Multi-node TP |
Production |
 |
🚀 LMDeploy |
FP8/BF16, Cloud deployment |
Enterprise |
 |
⚡ TensorRT-LLM |
INT4/8 quantization, NVIDIA optimization |
High Performance |
 |
🌪️ vLLM |
Pipeline parallelism, Multi-GPU |
Scalability |
 |
💡 LightLLM |
Multi-node, Mixed precision |
Flexibility |
 |
🖥️ Hardware Support
🔧 Platform |
💻 Hardware |
🎨 Precision |
📋 Framework |
🟢 NVIDIA GPUs |
H100, H800, A100 |
FP8, BF16, INT4/8 |
All frameworks |
🔴 AMD GPUs |
MI300X, MI250X |
FP8, BF16 |
SGLang, vLLM |
🟠 Huawei Ascend |
910B NPUs |
BF16, INT8 |
MindIE |
⚡ Quick Start
🐍 1. Installation
# Clone the repository
git clone https://github.com/deepseek-ai/DeepSeek-V3.git
cd DeepSeek-V3/inference
# Install dependencies
pip install -r requirements.txt
🔧 2. Model Conversion
# Convert HuggingFace weights
python convert.py \
--hf-ckpt-path /path/to/DeepSeek-V3 \
--save-path /path/to/DeepSeek-V3-Demo \
--n-experts 256 \
--model-parallel 16
🎯 3. Run Inference
# Interactive chat
torchrun --nnodes 2 --nproc-per-node 8 --node-rank $RANK --master-addr $ADDR \
generate.py --ckpt-path /path/to/DeepSeek-V3-Demo \
--config configs/config_671B.json --interactive --temperature 0.7
# Batch processing
torchrun --nnodes 2 --nproc-per-node 8 --node-rank $RANK --master-addr $ADDR \
generate.py --ckpt-path /path/to/DeepSeek-V3-Demo \
--config configs/config_671B.json --input-file $FILE
🏗️ Architecture Deep Dive
🧠 Core Innovations
┌─────────────────────────────────────────────────────────────┐
│ 🚀 DeepSeek-V3 Architecture │
├─────────────────────────────────────────────────────────────┤
│ 🔄 Auxiliary-Loss-Free Load Balancing │
│ ├── ⚖️ Minimizes performance degradation │
│ └── 🎯 Optimal expert utilization │
│ │
│ 🎲 Multi-Token Prediction (MTP) │
│ ├── 🚀 Enhanced model performance │
│ └── ⚡ Speculative decoding acceleration │
│ │
│ 🔢 FP8 Mixed Precision Training │
│ ├── 💎 First extreme-scale validation │
│ └── ⚡ Ultimate training efficiency │
│ │
│ 🧠 Knowledge Distillation from DeepSeek-R1 │
│ ├── 🔗 Long-Chain-of-Thought integration │
│ └── 🎯 Reasoning capability enhancement │
└─────────────────────────────────────────────────────────────┘
📈 Training Efficiency
🎯 Metric |
💎 Achievement |
🏆 Industry Impact |
⏱️ Training Time |
2.664M H800 GPU hours |
Most efficient 671B model |
📊 Data Volume |
14.8T high-quality tokens |
Comprehensive knowledge base |
🎯 Stability |
Zero loss spikes/rollbacks |
Unprecedented training stability |
💰 Cost Efficiency |
Economical pre-training |
Accessible large-scale AI |
🎨 Context Window Performance
🔍 Needle in a Haystack (NIAH) Results
Context Length Performance
████████████████████████████████████████ 128K ✅ Perfect
██████████████████████████████████████ 96K ✅ Excellent
████████████████████████████████████ 64K ✅ Excellent
██████████████████████████████████ 32K ✅ Perfect
████████████████████████████ 16K ✅ Perfect
████████████████████ 8K ✅ Perfect
████████████ 4K ✅ Perfect
🏆 DeepSeek-V3 maintains excellent performance across all context lengths up to 128K tokens
📄 Research & Citation
📚 Technical Paper

📖 Citation
@misc{deepseekai2024deepseekv3technicalreport,
title={DeepSeek-V3 Technical Report},
author={DeepSeek-AI},
year={2024},
eprint={2412.19437},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2412.19437},
}
📜 License & Usage

✅ Commercial use is fully supported for both Base and Chat models
🚀 Ready to Explore the Future?
DeepSeek-V3 represents a leap forward in artificial intelligence, combining unprecedented scale with remarkable efficiency. Join thousands of researchers, developers, and innovators who are already building the future with DeepSeek-V3.

🎯 Built with ❤️ by DeepSeek-AI • Pushing the boundaries of artificial intelligence