mirror of
https://github.com/deepseek-ai/DeepSeek-V3.git
synced 2025-07-04 23:41:37 -04:00
✅ Implemented initial Apple Silicon detection using sysctl system calls ✅ Added proper M1/M2/M3/M4 generation detection via CPU brand string ✅ Fixed memory leaks that occured during dev with proper allocator cleanup ✅ Enhanced Metal backend foundation with device capabilities ✅ Added `test_m_series.zig` for hardware verification 🔧 Key Technical Improvements: - Real hardware detection via `hw.model` (eg; `MacBookPro17,1`) - CPU brand string parsing for accurate M-series identification - Unified memory strategy detection (even under Rosetta) - Apple Neural Engine capability detection - Memory-safe device info structures 🧪 Verified on Apple Silicon: - M1 correctly detected (generation 1, no variant) - 16GB unified memory properly identified - Builds cleanly with Zig `0.15.0-dev.703+597dd328e` - No false positives for M1 Pro/Max/Ultra variants 📋 Updated README status to reflect experimental draft implementation ⚠️ Clearly marked as research/development foundation, not production ready
389 lines
14 KiB
Zig
389 lines
14 KiB
Zig
// Metal Backend for DeepSeek V3 on Apple Silicon
|
|
// Leverages Metal Performance Shaders and unified memory architecture
|
|
|
|
const std = @import("std");
|
|
const deepseek_core = @import("deepseek_core");
|
|
const Allocator = std.mem.Allocator;
|
|
const metal_device = @import("device.zig");
|
|
const MetalDeviceInfo = metal_device.MetalDeviceInfo;
|
|
|
|
/// Metal backend implementation for Apple Silicon
|
|
pub const MetalBackend = struct {
|
|
allocator: Allocator,
|
|
device_available: bool,
|
|
unified_memory_size: u64,
|
|
device_info: ?MetalDeviceInfo,
|
|
optimal_work_group_size: u32,
|
|
memory_strategy: metal_device.getMemoryStrategy(),
|
|
tensor_block_size: u32,
|
|
|
|
const Self = @This();
|
|
|
|
pub fn init(allocator: Allocator) !Self {
|
|
// Check if Metal is available (compile-time check for macOS)
|
|
const metal_available = @import("builtin").os.tag == .macos;
|
|
|
|
var device_info: ?MetalDeviceInfo = null;
|
|
var unified_memory_size: u64 = 0;
|
|
var optimal_work_group_size: u32 = 64; // Default
|
|
var tensor_block_size: u32 = 128; // Default
|
|
|
|
if (metal_available) {
|
|
// Detect Apple Silicon and M-series capabilities
|
|
device_info = try metal_device.detectAppleSilicon(allocator);
|
|
unified_memory_size = device_info.?.unified_memory_size;
|
|
optimal_work_group_size = metal_device.getOptimalWorkGroupSize();
|
|
tensor_block_size = metal_device.getOptimalTensorBlockSize();
|
|
|
|
std.log.info("Metal Backend initialized on {s}", .{device_info.?.device_name});
|
|
// Log detailed device information
|
|
if (device_info.?.is_apple_silicon) {
|
|
if (device_info.?.is_m_series) {
|
|
std.log.info("Detected M{d} {s} with {d}GB unified memory",
|
|
.{
|
|
device_info.?.series_generation,
|
|
device_info.?.variant,
|
|
unified_memory_size / (1024 * 1024 * 1024),
|
|
}
|
|
);
|
|
} else {
|
|
std.log.info("Detected Apple Silicon (non-M series) with {d}GB unified memory",
|
|
.{unified_memory_size / (1024 * 1024 * 1024)}
|
|
);
|
|
}
|
|
} else {
|
|
std.log.warn("Metal is available but not running on Apple Silicon");
|
|
}
|
|
} else {
|
|
std.log.warn("Metal Backend not available on this platform");
|
|
}
|
|
|
|
return Self{
|
|
.allocator = allocator,
|
|
.device_available = metal_available,
|
|
.unified_memory_size = unified_memory_size,
|
|
.device_info = device_info,
|
|
.optimal_work_group_size = optimal_work_group_size,
|
|
.memory_strategy = metal_device.getMemoryStrategy(),
|
|
.tensor_block_size = tensor_block_size,
|
|
};
|
|
}
|
|
|
|
pub fn deinit(self: *Self) void {
|
|
// TODO: Release Metal resources
|
|
_ = self;
|
|
}
|
|
|
|
/// Matrix multiplication using Metal Performance Shaders
|
|
pub fn matmul(
|
|
self: *Self,
|
|
a: *deepseek_core.Tensor,
|
|
b: *const deepseek_core.Tensor,
|
|
c: *deepseek_core.Tensor,
|
|
) !void {
|
|
if (!self.device_available) {
|
|
return error.MetalNotAvailable;
|
|
}
|
|
|
|
std.log.debug("Metal matmul: {}x{} * {}x{} -> {}x{}", .{
|
|
a.shape.dims[0], a.shape.dims[1],
|
|
b.shape.dims[0], b.shape.dims[1],
|
|
c.shape.dims[0], c.shape.dims[1]
|
|
});
|
|
|
|
// Check if we're on Apple Silicon M series for optimized path
|
|
if (self.device_info != null and self.device_info.?.is_m_series) {
|
|
std.log.debug("Using optimized M{d} {s} matrix multiplication",
|
|
.{
|
|
self.device_info.?.series_generation,
|
|
self.device_info.?.variant
|
|
}
|
|
);
|
|
|
|
// Select appropriate implementation based on M series generation
|
|
switch (self.device_info.?.series_generation) {
|
|
3 => return try self.matmulM3(a, b, c), // M3 optimized path
|
|
2 => return try self.matmulM2(a, b, c), // M2 optimized path
|
|
1 => return try self.matmulM1(a, b, c), // M1 optimized path
|
|
else => {} // Fall through to generic implementation
|
|
}
|
|
}
|
|
|
|
// TODO: Implement actual Metal compute shader
|
|
// This would involve:
|
|
// 1. Create MTLBuffer from tensor data
|
|
// 2. Set up compute pipeline with matmul shader
|
|
// 3. Dispatch compute commands with optimized workgroup size based on device
|
|
// 4. Copy results back to tensor
|
|
|
|
// For now, fallback to CPU implementation
|
|
std.log.warn("Falling back to CPU implementation, Metal not implemented");
|
|
return error.NotImplemented;
|
|
}
|
|
|
|
/// M1-optimized matrix multiplication
|
|
fn matmulM1(
|
|
self: *Self,
|
|
a: *deepseek_core.Tensor,
|
|
b: *const deepseek_core.Tensor,
|
|
c: *deepseek_core.Tensor,
|
|
) !void {
|
|
_ = self;
|
|
_ = a;
|
|
_ = b;
|
|
_ = c;
|
|
|
|
// TODO: M1-specific optimizations
|
|
// - Use MPSMatrixMultiplication with M1-specific parameters
|
|
// - Optimize for 7/8 GPU cores typically found in M1
|
|
// - Account for unified memory bandwidth on M1
|
|
|
|
return error.NotImplemented;
|
|
}
|
|
|
|
/// M2-optimized matrix multiplication
|
|
fn matmulM2(
|
|
self: *Self,
|
|
a: *deepseek_core.Tensor,
|
|
b: *const deepseek_core.Tensor,
|
|
c: *deepseek_core.Tensor,
|
|
) !void {
|
|
_ = self;
|
|
_ = a;
|
|
_ = b;
|
|
_ = c;
|
|
|
|
// TODO: M2-specific optimizations
|
|
// - Use MPSMatrixMultiplication with M2-specific parameters
|
|
// - Optimize for 8/10 GPU cores typically found in M2
|
|
// - Account for increased memory bandwidth on M2
|
|
|
|
return error.NotImplemented;
|
|
}
|
|
|
|
/// M3-optimized matrix multiplication
|
|
fn matmulM3(
|
|
self: *Self,
|
|
a: *deepseek_core.Tensor,
|
|
b: *const deepseek_core.Tensor,
|
|
c: *deepseek_core.Tensor,
|
|
) !void {
|
|
_ = self;
|
|
_ = a;
|
|
_ = b;
|
|
_ = c;
|
|
|
|
// TODO: M3-specific optimizations
|
|
// - Use MPSMatrixMultiplication with M3-specific parameters
|
|
// - Optimize for 10/16 GPU cores typically found in M3
|
|
// - Account for dynamic core switching on M3
|
|
|
|
return error.NotImplemented;
|
|
}
|
|
|
|
/// RMS normalization using Metal compute shader
|
|
pub fn rmsNorm(
|
|
self: *Self,
|
|
input: []const f32,
|
|
weight: []const f32,
|
|
output: []f32,
|
|
eps: f32,
|
|
) !void {
|
|
if (!self.device_available) {
|
|
return error.MetalNotAvailable;
|
|
}
|
|
|
|
std.log.debug("Metal RMS normalization with {} elements", .{input.len});
|
|
|
|
// Check if we're on Apple Silicon M series for optimized path
|
|
if (self.device_info != null and self.device_info.?.is_m_series) {
|
|
std.log.debug("Using optimized M{d} {s} RMS normalization",
|
|
.{
|
|
self.device_info.?.series_generation,
|
|
self.device_info.?.variant
|
|
}
|
|
);
|
|
|
|
// Select optimal workgroup size based on M series generation
|
|
const workgroup_size = switch (self.device_info.?.series_generation) {
|
|
3 => 256, // M3 has more GPU cores
|
|
2 => 192, // M2 optimization
|
|
else => 128, // M1 and others
|
|
};
|
|
|
|
// Determine if we should use unified memory approach
|
|
const use_unified_memory = self.memory_strategy == .UnifiedMemory;
|
|
|
|
// Calculate optimal thread count based on input size and GPU cores
|
|
const thread_count = std.math.min(
|
|
std.math.alignForward(usize, input.len, workgroup_size),
|
|
workgroup_size * 1024 // Maximum reasonable thread count
|
|
);
|
|
|
|
std.log.debug("RMS Norm using workgroup size: {}, threads: {}",
|
|
.{workgroup_size, thread_count});
|
|
|
|
// TODO: Implement Metal compute shader for RMS norm with M-series optimizations
|
|
// 1. Create buffers (potentially using managed storage mode for unified memory)
|
|
// 2. Set up compute pipeline with RMS norm shader
|
|
// 3. Dispatch compute with optimal work group size
|
|
// 4. Handle results with zero-copy when possible on unified memory
|
|
|
|
if (!use_unified_memory) {
|
|
// Would handle non-unified memory path differently
|
|
std.log.debug("Using discrete memory path");
|
|
}
|
|
|
|
// thread_count is used in the log message above, don't discard it
|
|
}
|
|
|
|
// TODO: Complete implementation of Metal compute shader for RMS norm
|
|
// Metal excels at parallel operations like normalization
|
|
|
|
// Don't discard input since it's used above for thread_count calculation
|
|
// Only discard these if not used above
|
|
_ = weight;
|
|
_ = output;
|
|
_ = eps;
|
|
|
|
return error.NotImplemented;
|
|
}
|
|
|
|
/// SwiGLU activation using Metal
|
|
pub fn swiglu(
|
|
self: *Self,
|
|
input: []const f32,
|
|
gate: []const f32,
|
|
output: []f32,
|
|
) !void {
|
|
if (!self.device_available) {
|
|
return error.MetalNotAvailable;
|
|
}
|
|
|
|
_ = input;
|
|
_ = gate;
|
|
_ = output;
|
|
|
|
std.log.debug("Metal SwiGLU activation");
|
|
|
|
// TODO: Implement Metal compute shader for SwiGLU
|
|
// GPU is perfect for element-wise operations like activations
|
|
|
|
return error.NotImplemented;
|
|
}
|
|
|
|
/// Attention mechanism optimized for Apple Silicon
|
|
pub fn attention(
|
|
self: *Self,
|
|
query: *deepseek_core.Tensor,
|
|
key: *const deepseek_core.Tensor,
|
|
value: *const deepseek_core.Tensor,
|
|
output: *deepseek_core.Tensor,
|
|
) !void {
|
|
if (!self.device_available) {
|
|
return error.MetalNotAvailable;
|
|
}
|
|
|
|
_ = query;
|
|
_ = key;
|
|
_ = value;
|
|
_ = output;
|
|
|
|
std.log.debug("Metal attention mechanism");
|
|
|
|
// TODO: Implement optimized attention for Apple Silicon
|
|
// This would leverage:
|
|
// - Unified memory for zero-copy operations
|
|
// - Metal Performance Shaders for optimized GEMM
|
|
// - Custom shaders for attention-specific operations
|
|
|
|
return error.NotImplemented;
|
|
}
|
|
|
|
/// Check GPU memory usage
|
|
pub fn getMemoryInfo(self: *Self) struct { used: u64, total: u64 } {
|
|
if (!self.device_available) {
|
|
return .{ .used = 0, .total = 0 };
|
|
}
|
|
|
|
// TODO: Query actual Metal device memory usage
|
|
return .{
|
|
.used = 0, // TODO: Get current usage
|
|
.total = self.unified_memory_size,
|
|
};
|
|
}
|
|
};
|
|
|
|
/// Create the Metal backend interface
|
|
pub fn init(allocator: Allocator) !deepseek_core.Backend {
|
|
// For now, return a simple backend struct
|
|
// In a full implementation, this would create a MetalBackend and wrap it
|
|
return deepseek_core.Backend.init(allocator, .metal, 0);
|
|
}
|
|
|
|
/// Metal compute shader templates (would be loaded from .metal files)
|
|
const metal_shaders = struct {
|
|
// Matrix multiplication shader (simplified)
|
|
const matmul_shader =
|
|
\\#include <metal_stdlib>
|
|
\\using namespace metal;
|
|
\\
|
|
\\kernel void matmul_kernel(
|
|
\\ device const float* a [[buffer(0)]],
|
|
\\ device const float* b [[buffer(1)]],
|
|
\\ device float* c [[buffer(2)]],
|
|
\\ constant uint& M [[buffer(3)]],
|
|
\\ constant uint& N [[buffer(4)]],
|
|
\\ constant uint& K [[buffer(5)]],
|
|
\\ uint2 gid [[thread_position_in_grid]]
|
|
\\) {
|
|
\\ if (gid.x >= N || gid.y >= M) return;
|
|
\\
|
|
\\ float sum = 0.0;
|
|
\\ for (uint k = 0; k < K; k++) {
|
|
\\ sum += a[gid.y * K + k] * b[k * N + gid.x];
|
|
\\ }
|
|
\\ c[gid.y * N + gid.x] = sum;
|
|
\\}
|
|
;
|
|
|
|
// RMS normalization shader
|
|
const rms_norm_shader =
|
|
\\#include <metal_stdlib>
|
|
\\using namespace metal;
|
|
\\
|
|
\\kernel void rms_norm_kernel(
|
|
\\ device const float* input [[buffer(0)]],
|
|
\\ device const float* weight [[buffer(1)]],
|
|
\\ device float* output [[buffer(2)]],
|
|
\\ constant uint& size [[buffer(3)]],
|
|
\\ constant float& eps [[buffer(4)]],
|
|
\\ uint gid [[thread_position_in_grid]]
|
|
\\) {
|
|
\\ // Simplified RMS norm - would need proper reduction
|
|
\\ if (gid >= size) return;
|
|
\\
|
|
\\ // TODO: Implement proper parallel reduction for mean square
|
|
\\ float mean_square = 0.0;
|
|
\\ for (uint i = 0; i < size; i++) {
|
|
\\ mean_square += input[i] * input[i];
|
|
\\ }
|
|
\\ mean_square /= size;
|
|
\\
|
|
\\ float rms = sqrt(mean_square + eps);
|
|
\\ output[gid] = (input[gid] / rms) * weight[gid];
|
|
\\}
|
|
;
|
|
};
|
|
|
|
/// Capabilities for Apple Silicon
|
|
fn getAppleSiliconCapabilities() deepseek_core.Backend.Capabilities {
|
|
return .{
|
|
.supports_fp16 = true, // Native fp16 support
|
|
.supports_bf16 = true, // M3+ supports bf16
|
|
.supports_int8 = true, // Efficient int8 operations
|
|
.max_memory_gb = 128, // Up to 128GB unified memory on Mac Studio
|
|
.compute_capability = null,
|
|
.simd_width = 32, // Metal SIMD-group size
|
|
};
|
|
} |