DeepSeek-V3/experimental/src/backends/metal/root.zig
Triex 0f980354f8 feat: Enhanced device detection handling, added metal initial draft, theoretically-reliable metal mac detection -> experimental implementation
 Implemented initial Apple Silicon detection using sysctl system calls
 Added proper M1/M2/M3/M4 generation detection via CPU brand string
 Fixed memory leaks that occured during dev with proper allocator cleanup
 Enhanced Metal backend foundation with device capabilities
 Added `test_m_series.zig` for hardware verification

🔧 Key Technical Improvements:
- Real hardware detection via `hw.model` (eg; `MacBookPro17,1`)
- CPU brand string parsing for accurate M-series identification
- Unified memory strategy detection (even under Rosetta)
- Apple Neural Engine capability detection
- Memory-safe device info structures

🧪 Verified on Apple Silicon:
- M1 correctly detected (generation 1, no variant)
- 16GB unified memory properly identified
- Builds cleanly with Zig `0.15.0-dev.703+597dd328e`
- No false positives for M1 Pro/Max/Ultra variants

📋 Updated README status to reflect experimental draft implementation
⚠️  Clearly marked as research/development foundation, not production ready
2025-06-11 17:43:04 +10:00

389 lines
14 KiB
Zig

// Metal Backend for DeepSeek V3 on Apple Silicon
// Leverages Metal Performance Shaders and unified memory architecture
const std = @import("std");
const deepseek_core = @import("deepseek_core");
const Allocator = std.mem.Allocator;
const metal_device = @import("device.zig");
const MetalDeviceInfo = metal_device.MetalDeviceInfo;
/// Metal backend implementation for Apple Silicon
pub const MetalBackend = struct {
allocator: Allocator,
device_available: bool,
unified_memory_size: u64,
device_info: ?MetalDeviceInfo,
optimal_work_group_size: u32,
memory_strategy: metal_device.getMemoryStrategy(),
tensor_block_size: u32,
const Self = @This();
pub fn init(allocator: Allocator) !Self {
// Check if Metal is available (compile-time check for macOS)
const metal_available = @import("builtin").os.tag == .macos;
var device_info: ?MetalDeviceInfo = null;
var unified_memory_size: u64 = 0;
var optimal_work_group_size: u32 = 64; // Default
var tensor_block_size: u32 = 128; // Default
if (metal_available) {
// Detect Apple Silicon and M-series capabilities
device_info = try metal_device.detectAppleSilicon(allocator);
unified_memory_size = device_info.?.unified_memory_size;
optimal_work_group_size = metal_device.getOptimalWorkGroupSize();
tensor_block_size = metal_device.getOptimalTensorBlockSize();
std.log.info("Metal Backend initialized on {s}", .{device_info.?.device_name});
// Log detailed device information
if (device_info.?.is_apple_silicon) {
if (device_info.?.is_m_series) {
std.log.info("Detected M{d} {s} with {d}GB unified memory",
.{
device_info.?.series_generation,
device_info.?.variant,
unified_memory_size / (1024 * 1024 * 1024),
}
);
} else {
std.log.info("Detected Apple Silicon (non-M series) with {d}GB unified memory",
.{unified_memory_size / (1024 * 1024 * 1024)}
);
}
} else {
std.log.warn("Metal is available but not running on Apple Silicon");
}
} else {
std.log.warn("Metal Backend not available on this platform");
}
return Self{
.allocator = allocator,
.device_available = metal_available,
.unified_memory_size = unified_memory_size,
.device_info = device_info,
.optimal_work_group_size = optimal_work_group_size,
.memory_strategy = metal_device.getMemoryStrategy(),
.tensor_block_size = tensor_block_size,
};
}
pub fn deinit(self: *Self) void {
// TODO: Release Metal resources
_ = self;
}
/// Matrix multiplication using Metal Performance Shaders
pub fn matmul(
self: *Self,
a: *deepseek_core.Tensor,
b: *const deepseek_core.Tensor,
c: *deepseek_core.Tensor,
) !void {
if (!self.device_available) {
return error.MetalNotAvailable;
}
std.log.debug("Metal matmul: {}x{} * {}x{} -> {}x{}", .{
a.shape.dims[0], a.shape.dims[1],
b.shape.dims[0], b.shape.dims[1],
c.shape.dims[0], c.shape.dims[1]
});
// Check if we're on Apple Silicon M series for optimized path
if (self.device_info != null and self.device_info.?.is_m_series) {
std.log.debug("Using optimized M{d} {s} matrix multiplication",
.{
self.device_info.?.series_generation,
self.device_info.?.variant
}
);
// Select appropriate implementation based on M series generation
switch (self.device_info.?.series_generation) {
3 => return try self.matmulM3(a, b, c), // M3 optimized path
2 => return try self.matmulM2(a, b, c), // M2 optimized path
1 => return try self.matmulM1(a, b, c), // M1 optimized path
else => {} // Fall through to generic implementation
}
}
// TODO: Implement actual Metal compute shader
// This would involve:
// 1. Create MTLBuffer from tensor data
// 2. Set up compute pipeline with matmul shader
// 3. Dispatch compute commands with optimized workgroup size based on device
// 4. Copy results back to tensor
// For now, fallback to CPU implementation
std.log.warn("Falling back to CPU implementation, Metal not implemented");
return error.NotImplemented;
}
/// M1-optimized matrix multiplication
fn matmulM1(
self: *Self,
a: *deepseek_core.Tensor,
b: *const deepseek_core.Tensor,
c: *deepseek_core.Tensor,
) !void {
_ = self;
_ = a;
_ = b;
_ = c;
// TODO: M1-specific optimizations
// - Use MPSMatrixMultiplication with M1-specific parameters
// - Optimize for 7/8 GPU cores typically found in M1
// - Account for unified memory bandwidth on M1
return error.NotImplemented;
}
/// M2-optimized matrix multiplication
fn matmulM2(
self: *Self,
a: *deepseek_core.Tensor,
b: *const deepseek_core.Tensor,
c: *deepseek_core.Tensor,
) !void {
_ = self;
_ = a;
_ = b;
_ = c;
// TODO: M2-specific optimizations
// - Use MPSMatrixMultiplication with M2-specific parameters
// - Optimize for 8/10 GPU cores typically found in M2
// - Account for increased memory bandwidth on M2
return error.NotImplemented;
}
/// M3-optimized matrix multiplication
fn matmulM3(
self: *Self,
a: *deepseek_core.Tensor,
b: *const deepseek_core.Tensor,
c: *deepseek_core.Tensor,
) !void {
_ = self;
_ = a;
_ = b;
_ = c;
// TODO: M3-specific optimizations
// - Use MPSMatrixMultiplication with M3-specific parameters
// - Optimize for 10/16 GPU cores typically found in M3
// - Account for dynamic core switching on M3
return error.NotImplemented;
}
/// RMS normalization using Metal compute shader
pub fn rmsNorm(
self: *Self,
input: []const f32,
weight: []const f32,
output: []f32,
eps: f32,
) !void {
if (!self.device_available) {
return error.MetalNotAvailable;
}
std.log.debug("Metal RMS normalization with {} elements", .{input.len});
// Check if we're on Apple Silicon M series for optimized path
if (self.device_info != null and self.device_info.?.is_m_series) {
std.log.debug("Using optimized M{d} {s} RMS normalization",
.{
self.device_info.?.series_generation,
self.device_info.?.variant
}
);
// Select optimal workgroup size based on M series generation
const workgroup_size = switch (self.device_info.?.series_generation) {
3 => 256, // M3 has more GPU cores
2 => 192, // M2 optimization
else => 128, // M1 and others
};
// Determine if we should use unified memory approach
const use_unified_memory = self.memory_strategy == .UnifiedMemory;
// Calculate optimal thread count based on input size and GPU cores
const thread_count = std.math.min(
std.math.alignForward(usize, input.len, workgroup_size),
workgroup_size * 1024 // Maximum reasonable thread count
);
std.log.debug("RMS Norm using workgroup size: {}, threads: {}",
.{workgroup_size, thread_count});
// TODO: Implement Metal compute shader for RMS norm with M-series optimizations
// 1. Create buffers (potentially using managed storage mode for unified memory)
// 2. Set up compute pipeline with RMS norm shader
// 3. Dispatch compute with optimal work group size
// 4. Handle results with zero-copy when possible on unified memory
if (!use_unified_memory) {
// Would handle non-unified memory path differently
std.log.debug("Using discrete memory path");
}
// thread_count is used in the log message above, don't discard it
}
// TODO: Complete implementation of Metal compute shader for RMS norm
// Metal excels at parallel operations like normalization
// Don't discard input since it's used above for thread_count calculation
// Only discard these if not used above
_ = weight;
_ = output;
_ = eps;
return error.NotImplemented;
}
/// SwiGLU activation using Metal
pub fn swiglu(
self: *Self,
input: []const f32,
gate: []const f32,
output: []f32,
) !void {
if (!self.device_available) {
return error.MetalNotAvailable;
}
_ = input;
_ = gate;
_ = output;
std.log.debug("Metal SwiGLU activation");
// TODO: Implement Metal compute shader for SwiGLU
// GPU is perfect for element-wise operations like activations
return error.NotImplemented;
}
/// Attention mechanism optimized for Apple Silicon
pub fn attention(
self: *Self,
query: *deepseek_core.Tensor,
key: *const deepseek_core.Tensor,
value: *const deepseek_core.Tensor,
output: *deepseek_core.Tensor,
) !void {
if (!self.device_available) {
return error.MetalNotAvailable;
}
_ = query;
_ = key;
_ = value;
_ = output;
std.log.debug("Metal attention mechanism");
// TODO: Implement optimized attention for Apple Silicon
// This would leverage:
// - Unified memory for zero-copy operations
// - Metal Performance Shaders for optimized GEMM
// - Custom shaders for attention-specific operations
return error.NotImplemented;
}
/// Check GPU memory usage
pub fn getMemoryInfo(self: *Self) struct { used: u64, total: u64 } {
if (!self.device_available) {
return .{ .used = 0, .total = 0 };
}
// TODO: Query actual Metal device memory usage
return .{
.used = 0, // TODO: Get current usage
.total = self.unified_memory_size,
};
}
};
/// Create the Metal backend interface
pub fn init(allocator: Allocator) !deepseek_core.Backend {
// For now, return a simple backend struct
// In a full implementation, this would create a MetalBackend and wrap it
return deepseek_core.Backend.init(allocator, .metal, 0);
}
/// Metal compute shader templates (would be loaded from .metal files)
const metal_shaders = struct {
// Matrix multiplication shader (simplified)
const matmul_shader =
\\#include <metal_stdlib>
\\using namespace metal;
\\
\\kernel void matmul_kernel(
\\ device const float* a [[buffer(0)]],
\\ device const float* b [[buffer(1)]],
\\ device float* c [[buffer(2)]],
\\ constant uint& M [[buffer(3)]],
\\ constant uint& N [[buffer(4)]],
\\ constant uint& K [[buffer(5)]],
\\ uint2 gid [[thread_position_in_grid]]
\\) {
\\ if (gid.x >= N || gid.y >= M) return;
\\
\\ float sum = 0.0;
\\ for (uint k = 0; k < K; k++) {
\\ sum += a[gid.y * K + k] * b[k * N + gid.x];
\\ }
\\ c[gid.y * N + gid.x] = sum;
\\}
;
// RMS normalization shader
const rms_norm_shader =
\\#include <metal_stdlib>
\\using namespace metal;
\\
\\kernel void rms_norm_kernel(
\\ device const float* input [[buffer(0)]],
\\ device const float* weight [[buffer(1)]],
\\ device float* output [[buffer(2)]],
\\ constant uint& size [[buffer(3)]],
\\ constant float& eps [[buffer(4)]],
\\ uint gid [[thread_position_in_grid]]
\\) {
\\ // Simplified RMS norm - would need proper reduction
\\ if (gid >= size) return;
\\
\\ // TODO: Implement proper parallel reduction for mean square
\\ float mean_square = 0.0;
\\ for (uint i = 0; i < size; i++) {
\\ mean_square += input[i] * input[i];
\\ }
\\ mean_square /= size;
\\
\\ float rms = sqrt(mean_square + eps);
\\ output[gid] = (input[gid] / rms) * weight[gid];
\\}
;
};
/// Capabilities for Apple Silicon
fn getAppleSiliconCapabilities() deepseek_core.Backend.Capabilities {
return .{
.supports_fp16 = true, // Native fp16 support
.supports_bf16 = true, // M3+ supports bf16
.supports_int8 = true, // Efficient int8 operations
.max_memory_gb = 128, // Up to 128GB unified memory on Mac Studio
.compute_capability = null,
.simd_width = 32, // Metal SIMD-group size
};
}