// Metal Backend for DeepSeek V3 on Apple Silicon // Leverages Metal Performance Shaders and unified memory architecture const std = @import("std"); const deepseek_core = @import("deepseek_core"); const Allocator = std.mem.Allocator; const metal_device = @import("device.zig"); const MetalDeviceInfo = metal_device.MetalDeviceInfo; /// Metal backend implementation for Apple Silicon pub const MetalBackend = struct { allocator: Allocator, device_available: bool, unified_memory_size: u64, device_info: ?MetalDeviceInfo, optimal_work_group_size: u32, memory_strategy: metal_device.getMemoryStrategy(), tensor_block_size: u32, const Self = @This(); pub fn init(allocator: Allocator) !Self { // Check if Metal is available (compile-time check for macOS) const metal_available = @import("builtin").os.tag == .macos; var device_info: ?MetalDeviceInfo = null; var unified_memory_size: u64 = 0; var optimal_work_group_size: u32 = 64; // Default var tensor_block_size: u32 = 128; // Default if (metal_available) { // Detect Apple Silicon and M-series capabilities device_info = try metal_device.detectAppleSilicon(allocator); unified_memory_size = device_info.?.unified_memory_size; optimal_work_group_size = metal_device.getOptimalWorkGroupSize(); tensor_block_size = metal_device.getOptimalTensorBlockSize(); std.log.info("Metal Backend initialized on {s}", .{device_info.?.device_name}); // Log detailed device information if (device_info.?.is_apple_silicon) { if (device_info.?.is_m_series) { std.log.info("Detected M{d} {s} with {d}GB unified memory", .{ device_info.?.series_generation, device_info.?.variant, unified_memory_size / (1024 * 1024 * 1024), } ); } else { std.log.info("Detected Apple Silicon (non-M series) with {d}GB unified memory", .{unified_memory_size / (1024 * 1024 * 1024)} ); } } else { std.log.warn("Metal is available but not running on Apple Silicon"); } } else { std.log.warn("Metal Backend not available on this platform"); } return Self{ .allocator = allocator, .device_available = metal_available, .unified_memory_size = unified_memory_size, .device_info = device_info, .optimal_work_group_size = optimal_work_group_size, .memory_strategy = metal_device.getMemoryStrategy(), .tensor_block_size = tensor_block_size, }; } pub fn deinit(self: *Self) void { // TODO: Release Metal resources _ = self; } /// Matrix multiplication using Metal Performance Shaders pub fn matmul( self: *Self, a: *deepseek_core.Tensor, b: *const deepseek_core.Tensor, c: *deepseek_core.Tensor, ) !void { if (!self.device_available) { return error.MetalNotAvailable; } std.log.debug("Metal matmul: {}x{} * {}x{} -> {}x{}", .{ a.shape.dims[0], a.shape.dims[1], b.shape.dims[0], b.shape.dims[1], c.shape.dims[0], c.shape.dims[1] }); // Check if we're on Apple Silicon M series for optimized path if (self.device_info != null and self.device_info.?.is_m_series) { std.log.debug("Using optimized M{d} {s} matrix multiplication", .{ self.device_info.?.series_generation, self.device_info.?.variant } ); // Select appropriate implementation based on M series generation switch (self.device_info.?.series_generation) { 3 => return try self.matmulM3(a, b, c), // M3 optimized path 2 => return try self.matmulM2(a, b, c), // M2 optimized path 1 => return try self.matmulM1(a, b, c), // M1 optimized path else => {} // Fall through to generic implementation } } // TODO: Implement actual Metal compute shader // This would involve: // 1. Create MTLBuffer from tensor data // 2. Set up compute pipeline with matmul shader // 3. Dispatch compute commands with optimized workgroup size based on device // 4. Copy results back to tensor // For now, fallback to CPU implementation std.log.warn("Falling back to CPU implementation, Metal not implemented"); return error.NotImplemented; } /// M1-optimized matrix multiplication fn matmulM1( self: *Self, a: *deepseek_core.Tensor, b: *const deepseek_core.Tensor, c: *deepseek_core.Tensor, ) !void { _ = self; _ = a; _ = b; _ = c; // TODO: M1-specific optimizations // - Use MPSMatrixMultiplication with M1-specific parameters // - Optimize for 7/8 GPU cores typically found in M1 // - Account for unified memory bandwidth on M1 return error.NotImplemented; } /// M2-optimized matrix multiplication fn matmulM2( self: *Self, a: *deepseek_core.Tensor, b: *const deepseek_core.Tensor, c: *deepseek_core.Tensor, ) !void { _ = self; _ = a; _ = b; _ = c; // TODO: M2-specific optimizations // - Use MPSMatrixMultiplication with M2-specific parameters // - Optimize for 8/10 GPU cores typically found in M2 // - Account for increased memory bandwidth on M2 return error.NotImplemented; } /// M3-optimized matrix multiplication fn matmulM3( self: *Self, a: *deepseek_core.Tensor, b: *const deepseek_core.Tensor, c: *deepseek_core.Tensor, ) !void { _ = self; _ = a; _ = b; _ = c; // TODO: M3-specific optimizations // - Use MPSMatrixMultiplication with M3-specific parameters // - Optimize for 10/16 GPU cores typically found in M3 // - Account for dynamic core switching on M3 return error.NotImplemented; } /// RMS normalization using Metal compute shader pub fn rmsNorm( self: *Self, input: []const f32, weight: []const f32, output: []f32, eps: f32, ) !void { if (!self.device_available) { return error.MetalNotAvailable; } std.log.debug("Metal RMS normalization with {} elements", .{input.len}); // Check if we're on Apple Silicon M series for optimized path if (self.device_info != null and self.device_info.?.is_m_series) { std.log.debug("Using optimized M{d} {s} RMS normalization", .{ self.device_info.?.series_generation, self.device_info.?.variant } ); // Select optimal workgroup size based on M series generation const workgroup_size = switch (self.device_info.?.series_generation) { 3 => 256, // M3 has more GPU cores 2 => 192, // M2 optimization else => 128, // M1 and others }; // Determine if we should use unified memory approach const use_unified_memory = self.memory_strategy == .UnifiedMemory; // Calculate optimal thread count based on input size and GPU cores const thread_count = std.math.min( std.math.alignForward(usize, input.len, workgroup_size), workgroup_size * 1024 // Maximum reasonable thread count ); std.log.debug("RMS Norm using workgroup size: {}, threads: {}", .{workgroup_size, thread_count}); // TODO: Implement Metal compute shader for RMS norm with M-series optimizations // 1. Create buffers (potentially using managed storage mode for unified memory) // 2. Set up compute pipeline with RMS norm shader // 3. Dispatch compute with optimal work group size // 4. Handle results with zero-copy when possible on unified memory if (!use_unified_memory) { // Would handle non-unified memory path differently std.log.debug("Using discrete memory path"); } // thread_count is used in the log message above, don't discard it } // TODO: Complete implementation of Metal compute shader for RMS norm // Metal excels at parallel operations like normalization // Don't discard input since it's used above for thread_count calculation // Only discard these if not used above _ = weight; _ = output; _ = eps; return error.NotImplemented; } /// SwiGLU activation using Metal pub fn swiglu( self: *Self, input: []const f32, gate: []const f32, output: []f32, ) !void { if (!self.device_available) { return error.MetalNotAvailable; } _ = input; _ = gate; _ = output; std.log.debug("Metal SwiGLU activation"); // TODO: Implement Metal compute shader for SwiGLU // GPU is perfect for element-wise operations like activations return error.NotImplemented; } /// Attention mechanism optimized for Apple Silicon pub fn attention( self: *Self, query: *deepseek_core.Tensor, key: *const deepseek_core.Tensor, value: *const deepseek_core.Tensor, output: *deepseek_core.Tensor, ) !void { if (!self.device_available) { return error.MetalNotAvailable; } _ = query; _ = key; _ = value; _ = output; std.log.debug("Metal attention mechanism"); // TODO: Implement optimized attention for Apple Silicon // This would leverage: // - Unified memory for zero-copy operations // - Metal Performance Shaders for optimized GEMM // - Custom shaders for attention-specific operations return error.NotImplemented; } /// Check GPU memory usage pub fn getMemoryInfo(self: *Self) struct { used: u64, total: u64 } { if (!self.device_available) { return .{ .used = 0, .total = 0 }; } // TODO: Query actual Metal device memory usage return .{ .used = 0, // TODO: Get current usage .total = self.unified_memory_size, }; } }; /// Create the Metal backend interface pub fn init(allocator: Allocator) !deepseek_core.Backend { // For now, return a simple backend struct // In a full implementation, this would create a MetalBackend and wrap it return deepseek_core.Backend.init(allocator, .metal, 0); } /// Metal compute shader templates (would be loaded from .metal files) const metal_shaders = struct { // Matrix multiplication shader (simplified) const matmul_shader = \\#include \\using namespace metal; \\ \\kernel void matmul_kernel( \\ device const float* a [[buffer(0)]], \\ device const float* b [[buffer(1)]], \\ device float* c [[buffer(2)]], \\ constant uint& M [[buffer(3)]], \\ constant uint& N [[buffer(4)]], \\ constant uint& K [[buffer(5)]], \\ uint2 gid [[thread_position_in_grid]] \\) { \\ if (gid.x >= N || gid.y >= M) return; \\ \\ float sum = 0.0; \\ for (uint k = 0; k < K; k++) { \\ sum += a[gid.y * K + k] * b[k * N + gid.x]; \\ } \\ c[gid.y * N + gid.x] = sum; \\} ; // RMS normalization shader const rms_norm_shader = \\#include \\using namespace metal; \\ \\kernel void rms_norm_kernel( \\ device const float* input [[buffer(0)]], \\ device const float* weight [[buffer(1)]], \\ device float* output [[buffer(2)]], \\ constant uint& size [[buffer(3)]], \\ constant float& eps [[buffer(4)]], \\ uint gid [[thread_position_in_grid]] \\) { \\ // Simplified RMS norm - would need proper reduction \\ if (gid >= size) return; \\ \\ // TODO: Implement proper parallel reduction for mean square \\ float mean_square = 0.0; \\ for (uint i = 0; i < size; i++) { \\ mean_square += input[i] * input[i]; \\ } \\ mean_square /= size; \\ \\ float rms = sqrt(mean_square + eps); \\ output[gid] = (input[gid] / rms) * weight[gid]; \\} ; }; /// Capabilities for Apple Silicon fn getAppleSiliconCapabilities() deepseek_core.Backend.Capabilities { return .{ .supports_fp16 = true, // Native fp16 support .supports_bf16 = true, // M3+ supports bf16 .supports_int8 = true, // Efficient int8 operations .max_memory_gb = 128, // Up to 128GB unified memory on Mac Studio .compute_capability = null, .simd_width = 32, // Metal SIMD-group size }; }