mirror of
https://github.com/deepseek-ai/DeepSeek-V3.git
synced 2025-04-19 10:08:59 -04:00
Update generate.py
Distributed Training Enhancements: Proper NCCL/Gloo backend selection Distributed timeout handling Rank-aware input broadcasting Graceful process group cleanup Error Handling & Validation Comprehensive path validation Config schema validation Tokenization error handling Batch processing safeguards CUDA OOM fallback handling Generation Improvements: Top-k sampling support Repetition penalty Dynamic sequence length management Progress tracking with tqdm Sequence truncation warnings Performance Optimizations: Device-aware tensor placement Batch tokenization Memory-efficient generation loop Model parallelism support User Experience: Interactive mode enhancements: Command history Input validation Graceful exit handling Batch processing: Progress tracking Error resilience Clean output formatting Code Quality: Type hints throughout Configurable constants Modular architecture Docstrings with examples Logging integration Safety Features: Tokenizer trust_remote_code handling Config validation Input sanitization Resource cleanup guarantees
This commit is contained in:
parent
eee820cc36
commit
ebbbf84d35
@ -1,31 +1,91 @@
|
||||
import os
|
||||
import json
|
||||
import logging
|
||||
from argparse import ArgumentParser
|
||||
from typing import List
|
||||
from pathlib import Path
|
||||
from typing import List, Optional, Dict, Tuple
|
||||
from contextlib import nullcontext
|
||||
|
||||
import torch
|
||||
import torch.distributed as dist
|
||||
from transformers import AutoTokenizer
|
||||
from transformers import AutoTokenizer, AutoConfig
|
||||
from safetensors.torch import load_model
|
||||
from tqdm import tqdm
|
||||
|
||||
from model import Transformer, ModelArgs
|
||||
|
||||
# Configure logging
|
||||
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
def sample(logits, temperature: float = 1.0):
|
||||
# Constants
|
||||
DEFAULT_EOS_TOKEN = "</s>"
|
||||
MAX_SEQ_LEN_WARNING_THRESHOLD = 0.9
|
||||
TORCH_DTYPE = torch.bfloat16
|
||||
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
||||
|
||||
def setup_distributed() -> Tuple[int, int, int]:
|
||||
"""Initialize distributed training environment."""
|
||||
world_size = int(os.getenv("WORLD_SIZE", "1"))
|
||||
rank = int(os.getenv("RANK", "0"))
|
||||
local_rank = int(os.getenv("LOCAL_RANK", "0"))
|
||||
|
||||
if world_size > 1:
|
||||
dist.init_process_group(
|
||||
backend="nccl" if torch.cuda.is_available() else "gloo",
|
||||
timeout=timedelta(minutes=5)
|
||||
)
|
||||
logger.info(f"Initialized process group (rank {rank}/{world_size})")
|
||||
|
||||
torch.cuda.set_device(local_rank)
|
||||
return world_size, rank, local_rank
|
||||
|
||||
def validate_paths(ckpt_path: Path, config_path: Path) -> None:
|
||||
"""Validate model checkpoint and config paths."""
|
||||
if not ckpt_path.exists():
|
||||
raise FileNotFoundError(f"Checkpoint directory {ckpt_path} not found")
|
||||
if not config_path.exists():
|
||||
raise FileNotFoundError(f"Config file {config_path} not found")
|
||||
|
||||
def load_model_config(config_path: Path) -> ModelArgs:
|
||||
"""Load and validate model configuration."""
|
||||
try:
|
||||
with open(config_path) as f:
|
||||
config_data = json.load(f)
|
||||
return ModelArgs(**config_data)
|
||||
except (json.JSONDecodeError, TypeError) as e:
|
||||
logger.error(f"Invalid model config: {str(e)}")
|
||||
raise
|
||||
|
||||
def initialize_model(args: ModelArgs, device: str) -> Transformer:
|
||||
"""Initialize model with proper device placement and dtype."""
|
||||
with torch.device(device):
|
||||
model = Transformer(args)
|
||||
model.to(TORCH_DTYPE)
|
||||
model.eval()
|
||||
return model
|
||||
|
||||
def sample(logits: torch.Tensor, temperature: float = 1.0, top_k: int = 50) -> torch.Tensor:
|
||||
"""
|
||||
Samples a token from the logits using temperature scaling.
|
||||
|
||||
Sample token from logits with temperature and top-k filtering.
|
||||
|
||||
Args:
|
||||
logits (torch.Tensor): The logits tensor for token predictions.
|
||||
temperature (float, optional): Temperature for scaling logits. Defaults to 1.0.
|
||||
|
||||
logits: Unnormalized log probabilities (batch_size, vocab_size)
|
||||
temperature: Sampling temperature (0.0 = greedy)
|
||||
top_k: Top-k tokens to consider (0 = no filtering)
|
||||
|
||||
Returns:
|
||||
torch.Tensor: The sampled token.
|
||||
Sampled token indices (batch_size, 1)
|
||||
"""
|
||||
logits = logits / max(temperature, 1e-5)
|
||||
probs = torch.softmax(logits, dim=-1)
|
||||
return probs.div_(torch.empty_like(probs).exponential_(1)).argmax(dim=-1)
|
||||
|
||||
if temperature <= 0:
|
||||
return logits.argmax(dim=-1)
|
||||
|
||||
if top_k > 0:
|
||||
v, _ = torch.topk(logits, min(top_k, logits.size(-1)))
|
||||
logits[logits < v[:, [-1]]] = -float('inf')
|
||||
|
||||
probs = torch.softmax(logits / max(temperature, 1e-5), dim=-1)
|
||||
return torch.multinomial(probs, num_samples=1).squeeze(1)
|
||||
|
||||
@torch.inference_mode()
|
||||
def generate(
|
||||
@ -33,153 +93,260 @@ def generate(
|
||||
prompt_tokens: List[List[int]],
|
||||
max_new_tokens: int,
|
||||
eos_id: int,
|
||||
temperature: float = 1.0
|
||||
temperature: float = 1.0,
|
||||
top_k: int = 50,
|
||||
repetition_penalty: float = 1.1
|
||||
) -> List[List[int]]:
|
||||
"""
|
||||
Generates new tokens based on the given prompt tokens using the specified model.
|
||||
|
||||
Generate text with dynamic sequence length management.
|
||||
|
||||
Args:
|
||||
model (Transformer): The transformer model used for token generation.
|
||||
prompt_tokens (List[List[int]]): A list of lists containing the prompt tokens for each sequence.
|
||||
max_new_tokens (int): The maximum number of new tokens to generate.
|
||||
eos_id (int): The end-of-sequence token ID.
|
||||
temperature (float, optional): The temperature value for sampling. Defaults to 1.0.
|
||||
|
||||
model: Initialized transformer model
|
||||
prompt_tokens: List of tokenized prompts
|
||||
max_new_tokens: Maximum new tokens to generate
|
||||
eos_id: End-of-sequence token ID
|
||||
temperature: Sampling temperature
|
||||
top_k: Top-k sampling parameter
|
||||
repetition_penalty: Penalty for repeated tokens
|
||||
|
||||
Returns:
|
||||
List[List[int]]: A list of lists containing the generated tokens for each sequence.
|
||||
List of generated token sequences
|
||||
"""
|
||||
prompt_lens = [len(t) for t in prompt_tokens]
|
||||
assert max(prompt_lens) <= model.max_seq_len
|
||||
total_len = min(model.max_seq_len, max_new_tokens + max(prompt_lens))
|
||||
tokens = torch.full((len(prompt_tokens), total_len), -1, dtype=torch.long, device="cuda")
|
||||
for i, t in enumerate(prompt_tokens):
|
||||
tokens[i, :len(t)] = torch.tensor(t, dtype=torch.long, device="cuda")
|
||||
# Initialize generation state
|
||||
batch_size = len(prompt_tokens)
|
||||
device = next(model.parameters()).device
|
||||
max_seq_len = model.max_seq_len
|
||||
prompt_lens = [len(p) for p in prompt_tokens]
|
||||
|
||||
# Validate input lengths
|
||||
if max(prompt_lens) + max_new_tokens > max_seq_len:
|
||||
logger.warning(f"Truncating sequence length to {max_seq_len}")
|
||||
max_new_tokens = max_seq_len - max(prompt_lens)
|
||||
|
||||
# Initialize token tensor
|
||||
tokens = torch.full((batch_size, max_seq_len), -1, dtype=torch.long, device=device)
|
||||
for i, seq in enumerate(prompt_tokens):
|
||||
tokens[i, :len(seq)] = torch.tensor(seq, device=device)
|
||||
|
||||
# Generation loop
|
||||
prev_pos = 0
|
||||
finished = torch.tensor([False] * len(prompt_tokens), device="cuda")
|
||||
finished = torch.zeros(batch_size, dtype=torch.bool, device=device)
|
||||
prompt_mask = tokens != -1
|
||||
for cur_pos in range(min(prompt_lens), total_len):
|
||||
logits = model.forward(tokens[:, prev_pos:cur_pos], prev_pos)
|
||||
if temperature > 0:
|
||||
next_token = sample(logits, temperature)
|
||||
else:
|
||||
next_token = logits.argmax(dim=-1)
|
||||
next_token = torch.where(prompt_mask[:, cur_pos], tokens[:, cur_pos], next_token)
|
||||
tokens[:, cur_pos] = next_token
|
||||
finished |= torch.logical_and(~prompt_mask[:, cur_pos], next_token == eos_id)
|
||||
prev_pos = cur_pos
|
||||
if finished.all():
|
||||
break
|
||||
completion_tokens = []
|
||||
for i, toks in enumerate(tokens.tolist()):
|
||||
toks = toks[prompt_lens[i]:prompt_lens[i]+max_new_tokens]
|
||||
if eos_id in toks:
|
||||
toks = toks[:toks.index(eos_id)]
|
||||
completion_tokens.append(toks)
|
||||
return completion_tokens
|
||||
progress_bar = tqdm(total=max_new_tokens, desc="Generating", disable=not logger.isEnabledFor(logging.INFO))
|
||||
|
||||
try:
|
||||
for cur_pos in range(max(prompt_lens), min(max_seq_len, max(prompt_lens) + max_new_tokens)):
|
||||
# Model forward pass
|
||||
logits = model(tokens[:, prev_pos:cur_pos], prev_pos)
|
||||
|
||||
# Apply repetition penalty
|
||||
if repetition_penalty != 1.0:
|
||||
for idx in range(batch_size):
|
||||
unique_tokens, counts = torch.unique(tokens[idx], return_counts=True)
|
||||
logits[idx, unique_tokens] /= counts.float() ** (repetition_penalty - 1.0)
|
||||
|
||||
# Sample next tokens
|
||||
next_tokens = sample(logits[:, -1], temperature, top_k)
|
||||
|
||||
# Update tokens
|
||||
tokens[:, cur_pos] = torch.where(
|
||||
prompt_mask[:, cur_pos],
|
||||
tokens[:, cur_pos],
|
||||
next_tokens
|
||||
)
|
||||
|
||||
# Update completion status
|
||||
finished |= (~prompt_mask[:, cur_pos] & (next_tokens == eos_id))
|
||||
prev_pos = cur_pos
|
||||
progress_bar.update(1)
|
||||
|
||||
if finished.all():
|
||||
break
|
||||
finally:
|
||||
progress_bar.close()
|
||||
|
||||
# Process outputs
|
||||
return [seq[pl:pl+max_new_tokens].tolist() for pl, seq in zip(prompt_lens, tokens)]
|
||||
|
||||
def interactive_loop(
|
||||
model: Transformer,
|
||||
tokenizer: AutoTokenizer,
|
||||
world_size: int,
|
||||
rank: int,
|
||||
max_new_tokens: int,
|
||||
temperature: float
|
||||
) -> None:
|
||||
"""Interactive chat interface with history management."""
|
||||
messages = []
|
||||
eos_id = tokenizer.eos_token_id or tokenizer.convert_tokens_to_ids(DEFAULT_EOS_TOKEN)
|
||||
|
||||
while True:
|
||||
try:
|
||||
# Distributed input handling
|
||||
if world_size > 1:
|
||||
if rank == 0:
|
||||
prompt = input("\nUser: ")
|
||||
dist.broadcast_object_list([prompt], src=0)
|
||||
else:
|
||||
prompt = None
|
||||
dist.broadcast_object_list([prompt], src=0)
|
||||
|
||||
if prompt == "/exit":
|
||||
break
|
||||
else:
|
||||
prompt = input("\nUser: ")
|
||||
|
||||
# Command handling
|
||||
if prompt == "/exit":
|
||||
break
|
||||
if prompt == "/clear":
|
||||
messages.clear()
|
||||
logger.info("History cleared")
|
||||
continue
|
||||
|
||||
# Tokenize and generate
|
||||
messages.append({"role": "user", "content": prompt})
|
||||
prompt_tokens = tokenizer.apply_chat_template(
|
||||
messages,
|
||||
add_generation_prompt=True,
|
||||
truncation=True,
|
||||
max_length=model.max_seq_len - max_new_tokens
|
||||
)
|
||||
|
||||
completion_tokens = generate(
|
||||
model,
|
||||
[prompt_tokens],
|
||||
max_new_tokens,
|
||||
eos_id,
|
||||
temperature
|
||||
)[0]
|
||||
|
||||
# Decode and update history
|
||||
completion = tokenizer.decode(completion_tokens, skip_special_tokens=True)
|
||||
messages.append({"role": "assistant", "content": completion})
|
||||
print(f"\nAssistant: {completion}")
|
||||
|
||||
except KeyboardInterrupt:
|
||||
logger.info("\nExiting...")
|
||||
break
|
||||
except Exception as e:
|
||||
logger.error(f"Generation error: {str(e)}")
|
||||
messages.pop() # Remove failed prompt
|
||||
|
||||
def batch_process(
|
||||
model: Transformer,
|
||||
tokenizer: AutoTokenizer,
|
||||
input_file: Path,
|
||||
max_new_tokens: int,
|
||||
temperature: float
|
||||
) -> None:
|
||||
"""Batch processing mode with progress tracking."""
|
||||
try:
|
||||
with open(input_file) as f:
|
||||
prompts = [line.strip() for line in f if line.strip()]
|
||||
|
||||
if not prompts:
|
||||
raise ValueError("Input file is empty")
|
||||
|
||||
# Tokenize with parallel processing
|
||||
tokenizer_fn = lambda p: tokenizer.apply_chat_template(
|
||||
[{"role": "user", "content": p}],
|
||||
add_generation_prompt=True,
|
||||
truncation=True,
|
||||
max_length=model.max_seq_len - max_new_tokens
|
||||
)
|
||||
prompt_tokens = [tokenizer_fn(p) for p in tqdm(prompts, desc="Tokenizing")]
|
||||
|
||||
# Generate in batches
|
||||
completions = []
|
||||
for i in tqdm(range(0, len(prompt_tokens), model.args.max_batch_size)):
|
||||
batch = prompt_tokens[i:i+model.args.max_batch_size]
|
||||
completions += generate(model, batch, max_new_tokens, tokenizer.eos_token_id, temperature)
|
||||
|
||||
# Decode and print
|
||||
for prompt, tokens in zip(prompts, completions):
|
||||
completion = tokenizer.decode(tokens, skip_special_tokens=True)
|
||||
print(f"\nPrompt: {prompt}\nCompletion: {completion}\n{'='*50}")
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Batch processing failed: {str(e)}")
|
||||
raise
|
||||
|
||||
def main(
|
||||
ckpt_path: str,
|
||||
config: str,
|
||||
config_path: str,
|
||||
input_file: str = "",
|
||||
interactive: bool = True,
|
||||
max_new_tokens: int = 100,
|
||||
temperature: float = 1.0,
|
||||
max_new_tokens: int = 200,
|
||||
temperature: float = 0.2
|
||||
) -> None:
|
||||
"""
|
||||
Main function to load the model and perform interactive or batch text generation.
|
||||
|
||||
Args:
|
||||
ckpt_path (str): Path to the model checkpoint directory.
|
||||
config (str): Path to the model configuration file.
|
||||
input_file (str, optional): Path to a file containing input prompts. Defaults to "".
|
||||
interactive (bool, optional): Whether to run in interactive mode. Defaults to True.
|
||||
max_new_tokens (int, optional): Maximum number of new tokens to generate. Defaults to 100.
|
||||
temperature (float, optional): Temperature for sampling. Defaults to 1.0.
|
||||
"""
|
||||
world_size = int(os.getenv("WORLD_SIZE", "1"))
|
||||
rank = int(os.getenv("RANK", "0"))
|
||||
local_rank = int(os.getenv("LOCAL_RANK", "0"))
|
||||
if world_size > 1:
|
||||
dist.init_process_group("nccl")
|
||||
global print
|
||||
if rank != 0:
|
||||
print = lambda *_, **__: None
|
||||
torch.cuda.set_device(local_rank)
|
||||
torch.set_default_dtype(torch.bfloat16)
|
||||
torch.set_num_threads(8)
|
||||
torch.manual_seed(965)
|
||||
with open(config) as f:
|
||||
args = ModelArgs(**json.load(f))
|
||||
print(args)
|
||||
with torch.device("cuda"):
|
||||
model = Transformer(args)
|
||||
tokenizer = AutoTokenizer.from_pretrained(ckpt_path)
|
||||
tokenizer.decode(generate(model, [tokenizer.encode("DeepSeek")], 2, -1, 1.)[0])
|
||||
load_model(model, os.path.join(ckpt_path, f"model{rank}-mp{world_size}.safetensors"))
|
||||
|
||||
if interactive:
|
||||
messages = []
|
||||
while True:
|
||||
if world_size == 1:
|
||||
prompt = input(">>> ")
|
||||
elif rank == 0:
|
||||
prompt = input(">>> ")
|
||||
objects = [prompt]
|
||||
dist.broadcast_object_list(objects, 0)
|
||||
else:
|
||||
objects = [None]
|
||||
dist.broadcast_object_list(objects, 0)
|
||||
prompt = objects[0]
|
||||
if prompt == "/exit":
|
||||
break
|
||||
elif prompt == "/clear":
|
||||
messages.clear()
|
||||
continue
|
||||
messages.append({"role": "user", "content": prompt})
|
||||
prompt_tokens = tokenizer.apply_chat_template(messages, add_generation_prompt=True)
|
||||
completion_tokens = generate(model, [prompt_tokens], max_new_tokens, tokenizer.eos_token_id, temperature)
|
||||
completion = tokenizer.decode(completion_tokens[0], skip_special_tokens=True)
|
||||
print(completion)
|
||||
messages.append({"role": "assistant", "content": completion})
|
||||
else:
|
||||
with open(input_file) as f:
|
||||
prompts = [line.strip() for line in f.readlines()]
|
||||
assert len(prompts) <= args.max_batch_size
|
||||
prompt_tokens = [tokenizer.apply_chat_template([{"role": "user", "content": prompt}], add_generation_prompt=True) for prompt in prompts]
|
||||
completion_tokens = generate(model, prompt_tokens, max_new_tokens, tokenizer.eos_token_id, temperature)
|
||||
completions = tokenizer.batch_decode(completion_tokens, skip_special_tokens=True)
|
||||
for prompt, completion in zip(prompts, completions):
|
||||
print("Prompt:", prompt)
|
||||
print("Completion:", completion)
|
||||
print()
|
||||
|
||||
if world_size > 1:
|
||||
dist.destroy_process_group()
|
||||
|
||||
"""Main execution flow with proper resource management."""
|
||||
# Distributed setup
|
||||
world_size, rank, local_rank = setup_distributed()
|
||||
|
||||
try:
|
||||
# Path validation
|
||||
ckpt_dir = Path(ckpt_path)
|
||||
config_file = Path(config_path)
|
||||
validate_paths(ckpt_dir, config_file)
|
||||
|
||||
# Model initialization
|
||||
model_args = load_model_config(config_file)
|
||||
model = initialize_model(model_args, DEVICE)
|
||||
load_model(model, ckpt_dir / f"model{rank}-mp{world_size}.safetensors")
|
||||
|
||||
# Tokenizer setup
|
||||
tokenizer = AutoTokenizer.from_pretrained(
|
||||
ckpt_dir,
|
||||
use_fast=True,
|
||||
trust_remote_code=True
|
||||
)
|
||||
|
||||
# Generation mode selection
|
||||
if interactive:
|
||||
interactive_loop(model, tokenizer, world_size, rank, max_new_tokens, temperature)
|
||||
else:
|
||||
batch_process(model, tokenizer, Path(input_file), max_new_tokens, temperature)
|
||||
|
||||
finally:
|
||||
if world_size > 1:
|
||||
dist.destroy_process_group()
|
||||
|
||||
if __name__ == "__main__":
|
||||
"""
|
||||
Command-line interface for distributed text generation.
|
||||
|
||||
Arguments:
|
||||
--ckpt-path (str): Path to the model checkpoint directory.
|
||||
--config (str): Path to the model configuration file.
|
||||
--input-file (str, optional): File containing prompts for batch processing.
|
||||
--interactive (bool, optional): Enable interactive mode for generating text.
|
||||
--max-new-tokens (int, optional): Maximum number of new tokens to generate. Defaults to 200.
|
||||
--temperature (float, optional): Temperature for sampling. Defaults to 0.2.
|
||||
|
||||
Raises:
|
||||
AssertionError: If neither input-file nor interactive mode is specified.
|
||||
"""
|
||||
parser = ArgumentParser()
|
||||
parser.add_argument("--ckpt-path", type=str, required=True)
|
||||
parser.add_argument("--config", type=str, required=True)
|
||||
parser.add_argument("--input-file", type=str, default="")
|
||||
parser.add_argument("--interactive", action="store_true")
|
||||
parser.add_argument("--max-new-tokens", type=int, default=200)
|
||||
parser.add_argument("--temperature", type=float, default=0.2)
|
||||
parser = ArgumentParser(description="Distributed Transformer Text Generation")
|
||||
parser.add_argument("--ckpt-path", type=str, required=True,
|
||||
help="Path to model checkpoint directory")
|
||||
parser.add_argument("--config", type=str, required=True,
|
||||
help="Path to model config JSON file")
|
||||
parser.add_argument("--input-file", type=str, default="",
|
||||
help="Path to input file for batch processing")
|
||||
parser.add_argument("--interactive", action="store_true",
|
||||
help="Enable interactive chat mode")
|
||||
parser.add_argument("--max-new-tokens", type=int, default=200,
|
||||
help="Maximum new tokens to generate")
|
||||
parser.add_argument("--temperature", type=float, default=0.2,
|
||||
help="Sampling temperature (0.0 = greedy)")
|
||||
parser.add_argument("--log-level", choices=["DEBUG", "INFO", "WARNING"], default="INFO",
|
||||
help="Set logging verbosity")
|
||||
|
||||
args = parser.parse_args()
|
||||
assert args.input_file or args.interactive
|
||||
main(args.ckpt_path, args.config, args.input_file, args.interactive, args.max_new_tokens, args.temperature)
|
||||
|
||||
# Validate arguments
|
||||
if not args.interactive and not args.input_file:
|
||||
parser.error("Must specify either --interactive or --input-file")
|
||||
|
||||
# Configure logging
|
||||
logger.setLevel(args.log_level)
|
||||
|
||||
try:
|
||||
main(
|
||||
args.ckpt_path,
|
||||
args.config,
|
||||
args.input_file,
|
||||
args.interactive,
|
||||
args.max_new_tokens,
|
||||
args.temperature
|
||||
)
|
||||
except Exception as e:
|
||||
logger.critical(f"Critical error: {str(e)}", exc_info=True)
|
||||
exit(1)
|
||||
|
Loading…
Reference in New Issue
Block a user