diff --git a/inference/generate.py b/inference/generate.py
index fbf3ab8..a76b66b 100644
--- a/inference/generate.py
+++ b/inference/generate.py
@@ -1,31 +1,91 @@
 import os
 import json
+import logging
 from argparse import ArgumentParser
-from typing import List
+from pathlib import Path
+from typing import List, Optional, Dict, Tuple
+from contextlib import nullcontext
 
 import torch
 import torch.distributed as dist
-from transformers import AutoTokenizer
+from transformers import AutoTokenizer, AutoConfig
 from safetensors.torch import load_model
+from tqdm import tqdm
 
 from model import Transformer, ModelArgs
 
+# Configure logging
+logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
+logger = logging.getLogger(__name__)
 
-def sample(logits, temperature: float = 1.0):
+# Constants
+DEFAULT_EOS_TOKEN = "</s>"
+MAX_SEQ_LEN_WARNING_THRESHOLD = 0.9
+TORCH_DTYPE = torch.bfloat16
+DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
+
+def setup_distributed() -> Tuple[int, int, int]:
+    """Initialize distributed training environment."""
+    world_size = int(os.getenv("WORLD_SIZE", "1"))
+    rank = int(os.getenv("RANK", "0"))
+    local_rank = int(os.getenv("LOCAL_RANK", "0"))
+
+    if world_size > 1:
+        dist.init_process_group(
+            backend="nccl" if torch.cuda.is_available() else "gloo",
+            timeout=timedelta(minutes=5)
+        )
+        logger.info(f"Initialized process group (rank {rank}/{world_size})")
+    
+    torch.cuda.set_device(local_rank)
+    return world_size, rank, local_rank
+
+def validate_paths(ckpt_path: Path, config_path: Path) -> None:
+    """Validate model checkpoint and config paths."""
+    if not ckpt_path.exists():
+        raise FileNotFoundError(f"Checkpoint directory {ckpt_path} not found")
+    if not config_path.exists():
+        raise FileNotFoundError(f"Config file {config_path} not found")
+
+def load_model_config(config_path: Path) -> ModelArgs:
+    """Load and validate model configuration."""
+    try:
+        with open(config_path) as f:
+            config_data = json.load(f)
+        return ModelArgs(**config_data)
+    except (json.JSONDecodeError, TypeError) as e:
+        logger.error(f"Invalid model config: {str(e)}")
+        raise
+
+def initialize_model(args: ModelArgs, device: str) -> Transformer:
+    """Initialize model with proper device placement and dtype."""
+    with torch.device(device):
+        model = Transformer(args)
+        model.to(TORCH_DTYPE)
+        model.eval()
+    return model
+
+def sample(logits: torch.Tensor, temperature: float = 1.0, top_k: int = 50) -> torch.Tensor:
     """
-    Samples a token from the logits using temperature scaling.
-
+    Sample token from logits with temperature and top-k filtering.
+    
     Args:
-        logits (torch.Tensor): The logits tensor for token predictions.
-        temperature (float, optional): Temperature for scaling logits. Defaults to 1.0.
-
+        logits: Unnormalized log probabilities (batch_size, vocab_size)
+        temperature: Sampling temperature (0.0 = greedy)
+        top_k: Top-k tokens to consider (0 = no filtering)
+    
     Returns:
-        torch.Tensor: The sampled token.
+        Sampled token indices (batch_size, 1)
     """
-    logits = logits / max(temperature, 1e-5)
-    probs = torch.softmax(logits, dim=-1)
-    return probs.div_(torch.empty_like(probs).exponential_(1)).argmax(dim=-1)
-
+    if temperature <= 0:
+        return logits.argmax(dim=-1)
+    
+    if top_k > 0:
+        v, _ = torch.topk(logits, min(top_k, logits.size(-1)))
+        logits[logits < v[:, [-1]]] = -float('inf')
+    
+    probs = torch.softmax(logits / max(temperature, 1e-5), dim=-1)
+    return torch.multinomial(probs, num_samples=1).squeeze(1)
 
 @torch.inference_mode()
 def generate(
@@ -33,153 +93,260 @@ def generate(
     prompt_tokens: List[List[int]],
     max_new_tokens: int,
     eos_id: int,
-    temperature: float = 1.0
+    temperature: float = 1.0,
+    top_k: int = 50,
+    repetition_penalty: float = 1.1
 ) -> List[List[int]]:
     """
-    Generates new tokens based on the given prompt tokens using the specified model.
-
+    Generate text with dynamic sequence length management.
+    
     Args:
-        model (Transformer): The transformer model used for token generation.
-        prompt_tokens (List[List[int]]): A list of lists containing the prompt tokens for each sequence.
-        max_new_tokens (int): The maximum number of new tokens to generate.
-        eos_id (int): The end-of-sequence token ID.
-        temperature (float, optional): The temperature value for sampling. Defaults to 1.0.
-
+        model: Initialized transformer model
+        prompt_tokens: List of tokenized prompts
+        max_new_tokens: Maximum new tokens to generate
+        eos_id: End-of-sequence token ID
+        temperature: Sampling temperature
+        top_k: Top-k sampling parameter
+        repetition_penalty: Penalty for repeated tokens
+    
     Returns:
-        List[List[int]]: A list of lists containing the generated tokens for each sequence.
+        List of generated token sequences
     """
-    prompt_lens = [len(t) for t in prompt_tokens]
-    assert max(prompt_lens) <= model.max_seq_len
-    total_len = min(model.max_seq_len, max_new_tokens + max(prompt_lens))
-    tokens = torch.full((len(prompt_tokens), total_len), -1, dtype=torch.long, device="cuda")
-    for i, t in enumerate(prompt_tokens):
-        tokens[i, :len(t)] = torch.tensor(t, dtype=torch.long, device="cuda")
+    # Initialize generation state
+    batch_size = len(prompt_tokens)
+    device = next(model.parameters()).device
+    max_seq_len = model.max_seq_len
+    prompt_lens = [len(p) for p in prompt_tokens]
+    
+    # Validate input lengths
+    if max(prompt_lens) + max_new_tokens > max_seq_len:
+        logger.warning(f"Truncating sequence length to {max_seq_len}")
+        max_new_tokens = max_seq_len - max(prompt_lens)
+    
+    # Initialize token tensor
+    tokens = torch.full((batch_size, max_seq_len), -1, dtype=torch.long, device=device)
+    for i, seq in enumerate(prompt_tokens):
+        tokens[i, :len(seq)] = torch.tensor(seq, device=device)
+    
+    # Generation loop
     prev_pos = 0
-    finished = torch.tensor([False] * len(prompt_tokens), device="cuda")
+    finished = torch.zeros(batch_size, dtype=torch.bool, device=device)
     prompt_mask = tokens != -1
-    for cur_pos in range(min(prompt_lens), total_len):
-        logits = model.forward(tokens[:, prev_pos:cur_pos], prev_pos)
-        if temperature > 0:
-            next_token = sample(logits, temperature)
-        else:
-            next_token = logits.argmax(dim=-1)
-        next_token = torch.where(prompt_mask[:, cur_pos], tokens[:, cur_pos], next_token)
-        tokens[:, cur_pos] = next_token
-        finished |= torch.logical_and(~prompt_mask[:, cur_pos], next_token == eos_id)
-        prev_pos = cur_pos
-        if finished.all():
-            break
-    completion_tokens = []
-    for i, toks in enumerate(tokens.tolist()):
-        toks = toks[prompt_lens[i]:prompt_lens[i]+max_new_tokens]
-        if eos_id in toks:
-            toks = toks[:toks.index(eos_id)]
-        completion_tokens.append(toks)
-    return completion_tokens
+    progress_bar = tqdm(total=max_new_tokens, desc="Generating", disable=not logger.isEnabledFor(logging.INFO))
+    
+    try:
+        for cur_pos in range(max(prompt_lens), min(max_seq_len, max(prompt_lens) + max_new_tokens)):
+            # Model forward pass
+            logits = model(tokens[:, prev_pos:cur_pos], prev_pos)
+            
+            # Apply repetition penalty
+            if repetition_penalty != 1.0:
+                for idx in range(batch_size):
+                    unique_tokens, counts = torch.unique(tokens[idx], return_counts=True)
+                    logits[idx, unique_tokens] /= counts.float() ** (repetition_penalty - 1.0)
+            
+            # Sample next tokens
+            next_tokens = sample(logits[:, -1], temperature, top_k)
+            
+            # Update tokens
+            tokens[:, cur_pos] = torch.where(
+                prompt_mask[:, cur_pos],
+                tokens[:, cur_pos],
+                next_tokens
+            )
+            
+            # Update completion status
+            finished |= (~prompt_mask[:, cur_pos] & (next_tokens == eos_id))
+            prev_pos = cur_pos
+            progress_bar.update(1)
+            
+            if finished.all():
+                break
+    finally:
+        progress_bar.close()
+    
+    # Process outputs
+    return [seq[pl:pl+max_new_tokens].tolist() for pl, seq in zip(prompt_lens, tokens)]
 
+def interactive_loop(
+    model: Transformer,
+    tokenizer: AutoTokenizer,
+    world_size: int,
+    rank: int,
+    max_new_tokens: int,
+    temperature: float
+) -> None:
+    """Interactive chat interface with history management."""
+    messages = []
+    eos_id = tokenizer.eos_token_id or tokenizer.convert_tokens_to_ids(DEFAULT_EOS_TOKEN)
+    
+    while True:
+        try:
+            # Distributed input handling
+            if world_size > 1:
+                if rank == 0:
+                    prompt = input("\nUser: ")
+                    dist.broadcast_object_list([prompt], src=0)
+                else:
+                    prompt = None
+                    dist.broadcast_object_list([prompt], src=0)
+                
+                if prompt == "/exit":
+                    break
+            else:
+                prompt = input("\nUser: ")
+            
+            # Command handling
+            if prompt == "/exit":
+                break
+            if prompt == "/clear":
+                messages.clear()
+                logger.info("History cleared")
+                continue
+            
+            # Tokenize and generate
+            messages.append({"role": "user", "content": prompt})
+            prompt_tokens = tokenizer.apply_chat_template(
+                messages, 
+                add_generation_prompt=True,
+                truncation=True,
+                max_length=model.max_seq_len - max_new_tokens
+            )
+            
+            completion_tokens = generate(
+                model, 
+                [prompt_tokens], 
+                max_new_tokens, 
+                eos_id, 
+                temperature
+            )[0]
+            
+            # Decode and update history
+            completion = tokenizer.decode(completion_tokens, skip_special_tokens=True)
+            messages.append({"role": "assistant", "content": completion})
+            print(f"\nAssistant: {completion}")
+        
+        except KeyboardInterrupt:
+            logger.info("\nExiting...")
+            break
+        except Exception as e:
+            logger.error(f"Generation error: {str(e)}")
+            messages.pop()  # Remove failed prompt
+
+def batch_process(
+    model: Transformer,
+    tokenizer: AutoTokenizer,
+    input_file: Path,
+    max_new_tokens: int,
+    temperature: float
+) -> None:
+    """Batch processing mode with progress tracking."""
+    try:
+        with open(input_file) as f:
+            prompts = [line.strip() for line in f if line.strip()]
+        
+        if not prompts:
+            raise ValueError("Input file is empty")
+        
+        # Tokenize with parallel processing
+        tokenizer_fn = lambda p: tokenizer.apply_chat_template(
+            [{"role": "user", "content": p}], 
+            add_generation_prompt=True,
+            truncation=True,
+            max_length=model.max_seq_len - max_new_tokens
+        )
+        prompt_tokens = [tokenizer_fn(p) for p in tqdm(prompts, desc="Tokenizing")]
+        
+        # Generate in batches
+        completions = []
+        for i in tqdm(range(0, len(prompt_tokens), model.args.max_batch_size)):
+            batch = prompt_tokens[i:i+model.args.max_batch_size]
+            completions += generate(model, batch, max_new_tokens, tokenizer.eos_token_id, temperature)
+        
+        # Decode and print
+        for prompt, tokens in zip(prompts, completions):
+            completion = tokenizer.decode(tokens, skip_special_tokens=True)
+            print(f"\nPrompt: {prompt}\nCompletion: {completion}\n{'='*50}")
+    
+    except Exception as e:
+        logger.error(f"Batch processing failed: {str(e)}")
+        raise
 
 def main(
     ckpt_path: str,
-    config: str,
+    config_path: str,
     input_file: str = "",
     interactive: bool = True,
-    max_new_tokens: int = 100,
-    temperature: float = 1.0,
+    max_new_tokens: int = 200,
+    temperature: float = 0.2
 ) -> None:
-    """
-    Main function to load the model and perform interactive or batch text generation.
-
-    Args:
-        ckpt_path (str): Path to the model checkpoint directory.
-        config (str): Path to the model configuration file.
-        input_file (str, optional): Path to a file containing input prompts. Defaults to "".
-        interactive (bool, optional): Whether to run in interactive mode. Defaults to True.
-        max_new_tokens (int, optional): Maximum number of new tokens to generate. Defaults to 100.
-        temperature (float, optional): Temperature for sampling. Defaults to 1.0.
-    """
-    world_size = int(os.getenv("WORLD_SIZE", "1"))
-    rank = int(os.getenv("RANK", "0"))
-    local_rank = int(os.getenv("LOCAL_RANK", "0"))
-    if world_size > 1:
-        dist.init_process_group("nccl")
-    global print
-    if rank != 0:
-        print = lambda *_, **__: None
-    torch.cuda.set_device(local_rank)
-    torch.set_default_dtype(torch.bfloat16)
-    torch.set_num_threads(8)
-    torch.manual_seed(965)
-    with open(config) as f:
-        args = ModelArgs(**json.load(f))
-    print(args)
-    with torch.device("cuda"):
-        model = Transformer(args)
-    tokenizer = AutoTokenizer.from_pretrained(ckpt_path)
-    tokenizer.decode(generate(model, [tokenizer.encode("DeepSeek")], 2, -1, 1.)[0])
-    load_model(model, os.path.join(ckpt_path, f"model{rank}-mp{world_size}.safetensors"))
-
-    if interactive:
-        messages = []
-        while True:
-            if world_size == 1:
-                prompt = input(">>> ")
-            elif rank == 0:
-                prompt = input(">>> ")
-                objects = [prompt]
-                dist.broadcast_object_list(objects, 0)
-            else:
-                objects = [None]
-                dist.broadcast_object_list(objects, 0)
-                prompt = objects[0]
-            if prompt == "/exit":
-                break
-            elif prompt == "/clear":
-                messages.clear()
-                continue
-            messages.append({"role": "user", "content": prompt})
-            prompt_tokens = tokenizer.apply_chat_template(messages, add_generation_prompt=True)
-            completion_tokens = generate(model, [prompt_tokens], max_new_tokens, tokenizer.eos_token_id, temperature)
-            completion = tokenizer.decode(completion_tokens[0], skip_special_tokens=True)
-            print(completion)
-            messages.append({"role": "assistant", "content": completion})
-    else:
-        with open(input_file) as f:
-            prompts = [line.strip() for line in f.readlines()]
-        assert len(prompts) <= args.max_batch_size
-        prompt_tokens = [tokenizer.apply_chat_template([{"role": "user", "content": prompt}], add_generation_prompt=True) for prompt in prompts]
-        completion_tokens = generate(model, prompt_tokens, max_new_tokens, tokenizer.eos_token_id, temperature)
-        completions = tokenizer.batch_decode(completion_tokens, skip_special_tokens=True)
-        for prompt, completion in zip(prompts, completions):
-            print("Prompt:", prompt)
-            print("Completion:", completion)
-            print()
-
-    if world_size > 1:
-        dist.destroy_process_group()
-
+    """Main execution flow with proper resource management."""
+    # Distributed setup
+    world_size, rank, local_rank = setup_distributed()
+    
+    try:
+        # Path validation
+        ckpt_dir = Path(ckpt_path)
+        config_file = Path(config_path)
+        validate_paths(ckpt_dir, config_file)
+        
+        # Model initialization
+        model_args = load_model_config(config_file)
+        model = initialize_model(model_args, DEVICE)
+        load_model(model, ckpt_dir / f"model{rank}-mp{world_size}.safetensors")
+        
+        # Tokenizer setup
+        tokenizer = AutoTokenizer.from_pretrained(
+            ckpt_dir,
+            use_fast=True,
+            trust_remote_code=True
+        )
+        
+        # Generation mode selection
+        if interactive:
+            interactive_loop(model, tokenizer, world_size, rank, max_new_tokens, temperature)
+        else:
+            batch_process(model, tokenizer, Path(input_file), max_new_tokens, temperature)
+    
+    finally:
+        if world_size > 1:
+            dist.destroy_process_group()
 
 if __name__ == "__main__":
-    """
-    Command-line interface for distributed text generation.
-
-    Arguments:
-        --ckpt-path (str): Path to the model checkpoint directory.
-        --config (str): Path to the model configuration file.
-        --input-file (str, optional): File containing prompts for batch processing.
-        --interactive (bool, optional): Enable interactive mode for generating text.
-        --max-new-tokens (int, optional): Maximum number of new tokens to generate. Defaults to 200.
-        --temperature (float, optional): Temperature for sampling. Defaults to 0.2.
-
-    Raises:
-        AssertionError: If neither input-file nor interactive mode is specified.
-    """
-    parser = ArgumentParser()
-    parser.add_argument("--ckpt-path", type=str, required=True)
-    parser.add_argument("--config", type=str, required=True)
-    parser.add_argument("--input-file", type=str, default="")
-    parser.add_argument("--interactive", action="store_true")
-    parser.add_argument("--max-new-tokens", type=int, default=200)
-    parser.add_argument("--temperature", type=float, default=0.2)
+    parser = ArgumentParser(description="Distributed Transformer Text Generation")
+    parser.add_argument("--ckpt-path", type=str, required=True,
+                       help="Path to model checkpoint directory")
+    parser.add_argument("--config", type=str, required=True,
+                       help="Path to model config JSON file")
+    parser.add_argument("--input-file", type=str, default="",
+                       help="Path to input file for batch processing")
+    parser.add_argument("--interactive", action="store_true",
+                       help="Enable interactive chat mode")
+    parser.add_argument("--max-new-tokens", type=int, default=200,
+                       help="Maximum new tokens to generate")
+    parser.add_argument("--temperature", type=float, default=0.2,
+                       help="Sampling temperature (0.0 = greedy)")
+    parser.add_argument("--log-level", choices=["DEBUG", "INFO", "WARNING"], default="INFO",
+                       help="Set logging verbosity")
+    
     args = parser.parse_args()
-    assert args.input_file or args.interactive
-    main(args.ckpt_path, args.config, args.input_file, args.interactive, args.max_new_tokens, args.temperature)
+    
+    # Validate arguments
+    if not args.interactive and not args.input_file:
+        parser.error("Must specify either --interactive or --input-file")
+    
+    # Configure logging
+    logger.setLevel(args.log_level)
+    
+    try:
+        main(
+            args.ckpt_path,
+            args.config,
+            args.input_file,
+            args.interactive,
+            args.max_new_tokens,
+            args.temperature
+        )
+    except Exception as e:
+        logger.critical(f"Critical error: {str(e)}", exc_info=True)
+        exit(1)