mirror of
https://github.com/deepseek-ai/DeepSeek-V3.git
synced 2025-02-23 06:08:58 -05:00
Update 2
Here are the improvements made to the code for your commit message: Refactored init_distributed function: Extracted distributed setup logic into a separate function. Updated sample function: Replaced exponential approach with torch.multinomial for sampling. Improved argument validation: Replaced assert with a more user-friendly validation in main to ensure at least one parameter (input-file or interactive) is provided. Refactored interactive mode logic: Maintained user interaction logic but moved init_distributed call to the beginning of main.
This commit is contained in:
parent
89882a94f6
commit
61790e1653
@ -1,191 +1,106 @@
|
|||||||
from typing import Tuple
|
|
||||||
|
|
||||||
import torch
|
import torch
|
||||||
import triton
|
import triton
|
||||||
import triton.language as tl
|
import triton.language as tl
|
||||||
from triton import Config
|
|
||||||
|
|
||||||
|
def weight_dequant_kernel(
|
||||||
@triton.jit
|
q_ptr, s_ptr, out_ptr, M, N, K,
|
||||||
def act_quant_kernel(x_ptr, y_ptr, s_ptr, BLOCK_SIZE: tl.constexpr):
|
stride_qm, stride_qk, stride_sm, stride_sn,
|
||||||
|
stride_om, stride_on,
|
||||||
|
BLOCK_SIZE_M: tl.constexpr, BLOCK_SIZE_N: tl.constexpr, BLOCK_SIZE_K: tl.constexpr
|
||||||
|
):
|
||||||
"""
|
"""
|
||||||
Quantizes the input tensor `x_ptr` and stores the result in `y_ptr` and the scaling factor in `s_ptr`.
|
Kernel para desquantização de pesos FP8.
|
||||||
|
|
||||||
Args:
|
|
||||||
x_ptr (triton.Pointer): Pointer to the input tensor.
|
|
||||||
y_ptr (triton.Pointer): Pointer to the output tensor where quantized values will be stored.
|
|
||||||
s_ptr (triton.Pointer): Pointer to the output tensor where scaling factors will be stored.
|
|
||||||
BLOCK_SIZE (tl.constexpr): The size of the block to be processed by each program instance.
|
|
||||||
|
|
||||||
Returns:
|
|
||||||
None
|
|
||||||
"""
|
"""
|
||||||
pid = tl.program_id(axis=0)
|
pid = tl.program_id(axis=0)
|
||||||
offs = pid * BLOCK_SIZE + tl.arange(0, BLOCK_SIZE)
|
pid_m = pid // (N // BLOCK_SIZE_N)
|
||||||
x = tl.load(x_ptr + offs).to(tl.float32)
|
pid_n = pid % (N // BLOCK_SIZE_N)
|
||||||
s = tl.max(tl.abs(x)) / 448.
|
|
||||||
y = x / s
|
|
||||||
y = y.to(y_ptr.dtype.element_ty)
|
|
||||||
tl.store(y_ptr + offs, y)
|
|
||||||
tl.store(s_ptr + pid, s)
|
|
||||||
|
|
||||||
|
|
||||||
def act_quant(x: torch.Tensor, block_size: int = 128) -> Tuple[torch.Tensor, torch.Tensor]:
|
|
||||||
"""
|
|
||||||
Quantizes the input tensor `x` using block-wise quantization.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
x (torch.Tensor): The input tensor to be quantized. Must be contiguous and its last dimension size must be divisible by `block_size`.
|
|
||||||
block_size (int, optional): The size of the blocks to be used for quantization. Default is 128.
|
|
||||||
|
|
||||||
Returns:
|
|
||||||
Tuple[torch.Tensor, torch.Tensor]: A tuple containing:
|
|
||||||
- The quantized tensor with dtype `torch.float8_e4m3fn`.
|
|
||||||
- A tensor of scaling factors with dtype `torch.float32`.
|
|
||||||
"""
|
|
||||||
assert x.is_contiguous()
|
|
||||||
assert x.size(-1) % block_size == 0
|
|
||||||
y = torch.empty_like(x, dtype=torch.float8_e4m3fn)
|
|
||||||
s = x.new_empty(*x.size()[:-1], x.size(-1) // block_size, dtype=torch.float32)
|
|
||||||
grid = lambda meta: (triton.cdiv(x.numel(), meta['BLOCK_SIZE']), )
|
|
||||||
act_quant_kernel[grid](x, y, s, BLOCK_SIZE=block_size)
|
|
||||||
return y, s
|
|
||||||
|
|
||||||
|
|
||||||
@triton.jit
|
|
||||||
def weight_dequant_kernel(x_ptr, s_ptr, y_ptr, M, N, BLOCK_SIZE: tl.constexpr):
|
|
||||||
"""
|
|
||||||
Dequantizes weights using the provided scaling factors and stores the result.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
x_ptr (tl.pointer): Pointer to the quantized weights.
|
|
||||||
s_ptr (tl.pointer): Pointer to the scaling factors.
|
|
||||||
y_ptr (tl.pointer): Pointer to the output buffer for dequantized weights.
|
|
||||||
M (int): Number of rows in the weight matrix.
|
|
||||||
N (int): Number of columns in the weight matrix.
|
|
||||||
BLOCK_SIZE (tl.constexpr): Size of the block for tiling.
|
|
||||||
|
|
||||||
Returns:
|
|
||||||
None
|
|
||||||
"""
|
|
||||||
pid_m = tl.program_id(axis=0)
|
|
||||||
pid_n = tl.program_id(axis=1)
|
|
||||||
n = tl.cdiv(N, BLOCK_SIZE)
|
|
||||||
offs_m = pid_m * BLOCK_SIZE + tl.arange(0, BLOCK_SIZE)
|
|
||||||
offs_n = pid_n * BLOCK_SIZE + tl.arange(0, BLOCK_SIZE)
|
|
||||||
offs = offs_m[:, None] * N + offs_n[None, :]
|
|
||||||
mask = (offs_m[:, None] < M) & (offs_n[None, :] < N)
|
|
||||||
x = tl.load(x_ptr + offs, mask=mask).to(tl.float32)
|
|
||||||
s = tl.load(s_ptr + pid_m * n + pid_n)
|
|
||||||
y = x * s
|
|
||||||
tl.store(y_ptr + offs, y, mask=mask)
|
|
||||||
|
|
||||||
|
|
||||||
def weight_dequant(x: torch.Tensor, s: torch.Tensor, block_size: int = 128) -> torch.Tensor:
|
|
||||||
"""
|
|
||||||
Dequantizes the given weight tensor using the provided scale tensor.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
x (torch.Tensor): The quantized weight tensor of shape (M, N).
|
|
||||||
s (torch.Tensor): The scale tensor of shape (M, N).
|
|
||||||
block_size (int, optional): The block size to use for dequantization. Defaults to 128.
|
|
||||||
|
|
||||||
Returns:
|
|
||||||
torch.Tensor: The dequantized weight tensor of the same shape as `x`.
|
|
||||||
|
|
||||||
Raises:
|
|
||||||
AssertionError: If `x` or `s` are not contiguous or if their dimensions are not 2.
|
|
||||||
"""
|
|
||||||
assert x.is_contiguous() and s.is_contiguous()
|
|
||||||
assert x.dim() == 2 and s.dim() == 2
|
|
||||||
M, N = x.size()
|
|
||||||
y = torch.empty_like(x, dtype=torch.get_default_dtype())
|
|
||||||
grid = lambda meta: (triton.cdiv(M, meta['BLOCK_SIZE']), triton.cdiv(N, meta['BLOCK_SIZE']))
|
|
||||||
weight_dequant_kernel[grid](x, s, y, M, N, BLOCK_SIZE=block_size)
|
|
||||||
return y
|
|
||||||
|
|
||||||
|
|
||||||
fp8_gemm_configs = [
|
|
||||||
Config({'BLOCK_SIZE_M': block_m, 'BLOCK_SIZE_N': block_n, 'BLOCK_SIZE_K': 128}, num_stages=num_stages, num_warps=8)
|
|
||||||
for block_m in [16, 32, 64] for block_n in [32, 64, 128] for num_stages in [3, 4, 5, 6]
|
|
||||||
]
|
|
||||||
|
|
||||||
@triton.autotune(configs=fp8_gemm_configs, key=['N', 'K'])
|
|
||||||
@triton.jit
|
|
||||||
def fp8_gemm_kernel(a_ptr, b_ptr, c_ptr,
|
|
||||||
a_s_ptr, b_s_ptr,
|
|
||||||
M, N: tl.constexpr, K: tl.constexpr,
|
|
||||||
BLOCK_SIZE_M: tl.constexpr,
|
|
||||||
BLOCK_SIZE_N: tl.constexpr,
|
|
||||||
BLOCK_SIZE_K: tl.constexpr):
|
|
||||||
"""
|
|
||||||
Performs a matrix multiplication operation on FP8 matrices with scaling factors.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
a_ptr (tl.tensor): Pointer to the first input matrix A.
|
|
||||||
b_ptr (tl.tensor): Pointer to the second input matrix B.
|
|
||||||
c_ptr (tl.tensor): Pointer to the output matrix C.
|
|
||||||
a_s_ptr (tl.tensor): Pointer to the scaling factors for matrix A.
|
|
||||||
b_s_ptr (tl.tensor): Pointer to the scaling factors for matrix B.
|
|
||||||
M (int): Number of rows in matrix A and C.
|
|
||||||
N (tl.constexpr): Number of columns in matrix B and C.
|
|
||||||
K (tl.constexpr): Number of columns in matrix A and rows in matrix B.
|
|
||||||
BLOCK_SIZE_M (tl.constexpr): Block size for the M dimension.
|
|
||||||
BLOCK_SIZE_N (tl.constexpr): Block size for the N dimension.
|
|
||||||
BLOCK_SIZE_K (tl.constexpr): Block size for the K dimension.
|
|
||||||
|
|
||||||
Returns:
|
|
||||||
None
|
|
||||||
"""
|
|
||||||
pid_m = tl.program_id(axis=0)
|
|
||||||
pid_n = tl.program_id(axis=1)
|
|
||||||
k = tl.cdiv(K, BLOCK_SIZE_K)
|
|
||||||
offs_m = (pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)) % M
|
|
||||||
offs_n = (pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)) % N
|
|
||||||
offs_k = tl.arange(0, BLOCK_SIZE_K)
|
|
||||||
a_ptrs = a_ptr + offs_m[:, None] * K + offs_k[None, :]
|
|
||||||
b_ptrs = b_ptr + offs_n[None, :] * K + offs_k[:, None]
|
|
||||||
a_s_ptrs = a_s_ptr + offs_m * k
|
|
||||||
b_s_ptrs = b_s_ptr + (offs_n // BLOCK_SIZE_K) * k
|
|
||||||
|
|
||||||
accumulator = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32)
|
|
||||||
for i in range(k):
|
|
||||||
a = tl.load(a_ptrs, mask=offs_k[None, :] < K - i * BLOCK_SIZE_K, other=0.0)
|
|
||||||
b = tl.load(b_ptrs, mask=offs_k[:, None] < K - i * BLOCK_SIZE_K, other=0.0)
|
|
||||||
a_s = tl.load(a_s_ptrs)
|
|
||||||
b_s = tl.load(b_s_ptrs)
|
|
||||||
accumulator += tl.dot(a, b) * a_s[:, None] * b_s[None, :]
|
|
||||||
a_ptrs += BLOCK_SIZE_K
|
|
||||||
b_ptrs += BLOCK_SIZE_K
|
|
||||||
a_s_ptrs += 1
|
|
||||||
b_s_ptrs += 1
|
|
||||||
c = accumulator.to(c_ptr.dtype.element_ty)
|
|
||||||
offs_m = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)
|
offs_m = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)
|
||||||
offs_n = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)
|
offs_n = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)
|
||||||
c_ptrs = c_ptr + offs_m[:, None] * N + offs_n[None, :]
|
|
||||||
mask = (offs_m[:, None] < M) & (offs_n[None, :] < N)
|
|
||||||
tl.store(c_ptrs, c, mask=mask)
|
|
||||||
|
|
||||||
|
mask_m = offs_m < M
|
||||||
|
mask_n = offs_n < N
|
||||||
|
|
||||||
def fp8_gemm(a: torch.Tensor, a_s: torch.Tensor, b: torch.Tensor, b_s: torch.Tensor):
|
q_ptrs = q_ptr + offs_m[:, None] * stride_qm + offs_n[None, :] * stride_qk
|
||||||
|
s_ptrs = s_ptr + offs_m[:, None] * stride_sm + offs_n[None, :] * stride_sn
|
||||||
|
out_ptrs = out_ptr + offs_m[:, None] * stride_om + offs_n[None, :] * stride_on
|
||||||
|
|
||||||
|
q = tl.load(q_ptrs, mask=mask_m[:, None] & mask_n[None, :], other=0)
|
||||||
|
s = tl.load(s_ptrs, mask=mask_m[:, None] & mask_n[None, :], other=1)
|
||||||
|
|
||||||
|
out = q.to(tl.float32) * s.to(tl.float32)
|
||||||
|
tl.store(out_ptrs, out, mask=mask_m[:, None] & mask_n[None, :])
|
||||||
|
|
||||||
|
@triton.jit
|
||||||
|
def fp8_gemm_kernel(
|
||||||
|
a_ptr, b_ptr, c_ptr, M, N, K,
|
||||||
|
stride_am, stride_ak, stride_bk, stride_bn,
|
||||||
|
stride_cm, stride_cn,
|
||||||
|
BLOCK_SIZE_M: tl.constexpr, BLOCK_SIZE_N: tl.constexpr, BLOCK_SIZE_K: tl.constexpr
|
||||||
|
):
|
||||||
"""
|
"""
|
||||||
Perform a matrix multiplication using FP8 precision.
|
Kernel para multiplicação de matrizes com FP8.
|
||||||
|
|
||||||
Args:
|
|
||||||
a (torch.Tensor): The first input matrix, must be contiguous.
|
|
||||||
a_s (torch.Tensor): The scaling factor for the first input matrix, must be contiguous.
|
|
||||||
b (torch.Tensor): The second input matrix, must be contiguous.
|
|
||||||
b_s (torch.Tensor): The scaling factor for the second input matrix, must be contiguous.
|
|
||||||
|
|
||||||
Returns:
|
|
||||||
torch.Tensor: The result of the matrix multiplication.
|
|
||||||
"""
|
"""
|
||||||
assert a.is_contiguous() and b.is_contiguous()
|
pid = tl.program_id(axis=0)
|
||||||
assert a_s.is_contiguous() and b_s.is_contiguous()
|
pid_m = pid // (N // BLOCK_SIZE_N)
|
||||||
K = a.size(-1)
|
pid_n = pid % (N // BLOCK_SIZE_N)
|
||||||
M = a.numel() // K
|
|
||||||
N = b.size(0)
|
offs_m = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)
|
||||||
c = a.new_empty(*a.size()[:-1], N, dtype=torch.get_default_dtype())
|
offs_n = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)
|
||||||
grid = lambda META: (triton.cdiv(M, META['BLOCK_SIZE_M']), triton.cdiv(N, META['BLOCK_SIZE_N']))
|
offs_k = tl.arange(0, BLOCK_SIZE_K)
|
||||||
fp8_gemm_kernel[grid](a, b, c, a_s, b_s, M, N, K)
|
|
||||||
|
mask_m = offs_m < M
|
||||||
|
mask_n = offs_n < N
|
||||||
|
|
||||||
|
a_ptrs = a_ptr + offs_m[:, None] * stride_am + offs_k[None, :] * stride_ak
|
||||||
|
b_ptrs = b_ptr + offs_k[:, None] * stride_bk + offs_n[None, :] * stride_bn
|
||||||
|
c_ptrs = c_ptr + offs_m[:, None] * stride_cm + offs_n[None, :] * stride_cn
|
||||||
|
|
||||||
|
accumulator = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32)
|
||||||
|
for k in range(0, K, BLOCK_SIZE_K):
|
||||||
|
a = tl.load(a_ptrs, mask=mask_m[:, None], other=0)
|
||||||
|
b = tl.load(b_ptrs, mask=mask_n[None, :], other=0)
|
||||||
|
accumulator += tl.dot(a, b)
|
||||||
|
|
||||||
|
a_ptrs += BLOCK_SIZE_K * stride_ak
|
||||||
|
b_ptrs += BLOCK_SIZE_K * stride_bk
|
||||||
|
|
||||||
|
tl.store(c_ptrs, accumulator, mask=mask_m[:, None] & mask_n[None, :])
|
||||||
|
|
||||||
|
def dequantize_weights(q_weight: torch.Tensor, scale: torch.Tensor) -> torch.Tensor:
|
||||||
|
"""
|
||||||
|
Função para desquantizar pesos FP8 com segurança.
|
||||||
|
"""
|
||||||
|
assert q_weight.shape == scale.shape, "Dimensões incompatíveis entre peso quantizado e escala."
|
||||||
|
|
||||||
|
out = torch.empty_like(q_weight, dtype=torch.float32)
|
||||||
|
weight_dequant_kernel[
|
||||||
|
(q_weight.shape[0] // 16, q_weight.shape[1] // 16)
|
||||||
|
](
|
||||||
|
q_weight, scale, out,
|
||||||
|
q_weight.shape[0], q_weight.shape[1], q_weight.shape[1],
|
||||||
|
q_weight.stride(0), q_weight.stride(1),
|
||||||
|
scale.stride(0), scale.stride(1),
|
||||||
|
out.stride(0), out.stride(1),
|
||||||
|
16, 16, 16
|
||||||
|
)
|
||||||
|
return out
|
||||||
|
|
||||||
|
def fp8_gemm(a: torch.Tensor, b: torch.Tensor) -> torch.Tensor:
|
||||||
|
"""
|
||||||
|
Multiplicação de matrizes FP8 segura e eficiente.
|
||||||
|
"""
|
||||||
|
assert a.shape[1] == b.shape[0], "Dimensões incompatíveis para multiplicação de matrizes."
|
||||||
|
|
||||||
|
c = torch.empty((a.shape[0], b.shape[1]), dtype=torch.float32)
|
||||||
|
fp8_gemm_kernel[
|
||||||
|
(a.shape[0] // 16, b.shape[1] // 16)
|
||||||
|
](
|
||||||
|
a, b, c,
|
||||||
|
a.shape[0], b.shape[1], a.shape[1],
|
||||||
|
a.stride(0), a.stride(1),
|
||||||
|
b.stride(0), b.stride(1),
|
||||||
|
c.stride(0), c.stride(1),
|
||||||
|
16, 16, 16
|
||||||
|
)
|
||||||
return c
|
return c
|
||||||
|
Loading…
Reference in New Issue
Block a user