mirror of
https://github.com/deepseek-ai/DeepSeek-V3.git
synced 2025-02-23 14:18:57 -05:00
Here are the improvements made to the code for your commit message: Refactored init_distributed function: Extracted distributed setup logic into a separate function. Updated sample function: Replaced exponential approach with torch.multinomial for sampling. Improved argument validation: Replaced assert with a more user-friendly validation in main to ensure at least one parameter (input-file or interactive) is provided. Refactored interactive mode logic: Maintained user interaction logic but moved init_distributed call to the beginning of main.
107 lines
3.7 KiB
Python
107 lines
3.7 KiB
Python
import torch
|
|
import triton
|
|
import triton.language as tl
|
|
|
|
def weight_dequant_kernel(
|
|
q_ptr, s_ptr, out_ptr, M, N, K,
|
|
stride_qm, stride_qk, stride_sm, stride_sn,
|
|
stride_om, stride_on,
|
|
BLOCK_SIZE_M: tl.constexpr, BLOCK_SIZE_N: tl.constexpr, BLOCK_SIZE_K: tl.constexpr
|
|
):
|
|
"""
|
|
Kernel para desquantização de pesos FP8.
|
|
"""
|
|
pid = tl.program_id(axis=0)
|
|
pid_m = pid // (N // BLOCK_SIZE_N)
|
|
pid_n = pid % (N // BLOCK_SIZE_N)
|
|
|
|
offs_m = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)
|
|
offs_n = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)
|
|
|
|
mask_m = offs_m < M
|
|
mask_n = offs_n < N
|
|
|
|
q_ptrs = q_ptr + offs_m[:, None] * stride_qm + offs_n[None, :] * stride_qk
|
|
s_ptrs = s_ptr + offs_m[:, None] * stride_sm + offs_n[None, :] * stride_sn
|
|
out_ptrs = out_ptr + offs_m[:, None] * stride_om + offs_n[None, :] * stride_on
|
|
|
|
q = tl.load(q_ptrs, mask=mask_m[:, None] & mask_n[None, :], other=0)
|
|
s = tl.load(s_ptrs, mask=mask_m[:, None] & mask_n[None, :], other=1)
|
|
|
|
out = q.to(tl.float32) * s.to(tl.float32)
|
|
tl.store(out_ptrs, out, mask=mask_m[:, None] & mask_n[None, :])
|
|
|
|
@triton.jit
|
|
def fp8_gemm_kernel(
|
|
a_ptr, b_ptr, c_ptr, M, N, K,
|
|
stride_am, stride_ak, stride_bk, stride_bn,
|
|
stride_cm, stride_cn,
|
|
BLOCK_SIZE_M: tl.constexpr, BLOCK_SIZE_N: tl.constexpr, BLOCK_SIZE_K: tl.constexpr
|
|
):
|
|
"""
|
|
Kernel para multiplicação de matrizes com FP8.
|
|
"""
|
|
pid = tl.program_id(axis=0)
|
|
pid_m = pid // (N // BLOCK_SIZE_N)
|
|
pid_n = pid % (N // BLOCK_SIZE_N)
|
|
|
|
offs_m = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)
|
|
offs_n = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)
|
|
offs_k = tl.arange(0, BLOCK_SIZE_K)
|
|
|
|
mask_m = offs_m < M
|
|
mask_n = offs_n < N
|
|
|
|
a_ptrs = a_ptr + offs_m[:, None] * stride_am + offs_k[None, :] * stride_ak
|
|
b_ptrs = b_ptr + offs_k[:, None] * stride_bk + offs_n[None, :] * stride_bn
|
|
c_ptrs = c_ptr + offs_m[:, None] * stride_cm + offs_n[None, :] * stride_cn
|
|
|
|
accumulator = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32)
|
|
for k in range(0, K, BLOCK_SIZE_K):
|
|
a = tl.load(a_ptrs, mask=mask_m[:, None], other=0)
|
|
b = tl.load(b_ptrs, mask=mask_n[None, :], other=0)
|
|
accumulator += tl.dot(a, b)
|
|
|
|
a_ptrs += BLOCK_SIZE_K * stride_ak
|
|
b_ptrs += BLOCK_SIZE_K * stride_bk
|
|
|
|
tl.store(c_ptrs, accumulator, mask=mask_m[:, None] & mask_n[None, :])
|
|
|
|
def dequantize_weights(q_weight: torch.Tensor, scale: torch.Tensor) -> torch.Tensor:
|
|
"""
|
|
Função para desquantizar pesos FP8 com segurança.
|
|
"""
|
|
assert q_weight.shape == scale.shape, "Dimensões incompatíveis entre peso quantizado e escala."
|
|
|
|
out = torch.empty_like(q_weight, dtype=torch.float32)
|
|
weight_dequant_kernel[
|
|
(q_weight.shape[0] // 16, q_weight.shape[1] // 16)
|
|
](
|
|
q_weight, scale, out,
|
|
q_weight.shape[0], q_weight.shape[1], q_weight.shape[1],
|
|
q_weight.stride(0), q_weight.stride(1),
|
|
scale.stride(0), scale.stride(1),
|
|
out.stride(0), out.stride(1),
|
|
16, 16, 16
|
|
)
|
|
return out
|
|
|
|
def fp8_gemm(a: torch.Tensor, b: torch.Tensor) -> torch.Tensor:
|
|
"""
|
|
Multiplicação de matrizes FP8 segura e eficiente.
|
|
"""
|
|
assert a.shape[1] == b.shape[0], "Dimensões incompatíveis para multiplicação de matrizes."
|
|
|
|
c = torch.empty((a.shape[0], b.shape[1]), dtype=torch.float32)
|
|
fp8_gemm_kernel[
|
|
(a.shape[0] // 16, b.shape[1] // 16)
|
|
](
|
|
a, b, c,
|
|
a.shape[0], b.shape[1], a.shape[1],
|
|
a.stride(0), a.stride(1),
|
|
b.stride(0), b.stride(1),
|
|
c.stride(0), c.stride(1),
|
|
16, 16, 16
|
|
)
|
|
return c
|