Janus/demo/fastapi_app.py
2025-01-28 21:44:13 +08:00

190 lines
6.7 KiB
Python

from fastapi import FastAPI, File, Form, UploadFile, HTTPException
from fastapi.responses import JSONResponse, StreamingResponse
import torch
from transformers import AutoConfig, AutoModelForCausalLM
from janus.models import MultiModalityCausalLM, VLChatProcessor
from PIL import Image
import numpy as np
import io
app = FastAPI()
# Device and dtype configuration
def get_device_and_dtype():
if torch.cuda.is_available():
return 'cuda', torch.bfloat16
elif torch.backends.mps.is_available():
return 'mps', torch.float16
return 'cpu', torch.float32
device, dtype = get_device_and_dtype()
# Load model and processor
model_path = "deepseek-ai/Janus-1.3B"
config = AutoConfig.from_pretrained(model_path)
language_config = config.language_config
language_config._attn_implementation = 'eager'
vl_gpt = AutoModelForCausalLM.from_pretrained(model_path,
language_config=language_config,
trust_remote_code=True)
vl_gpt = vl_gpt.to(dtype).to(device)
vl_chat_processor = VLChatProcessor.from_pretrained(model_path)
tokenizer = vl_chat_processor.tokenizer
@torch.inference_mode()
def multimodal_understanding(image_data, question, seed, top_p, temperature):
torch.cuda.empty_cache() if device == 'cuda' else None
torch.manual_seed(seed)
np.random.seed(seed)
if device == 'cuda':
torch.cuda.manual_seed(seed)
conversation = [
{
"role": "User",
"content": f"<image_placeholder>\n{question}",
"images": [image_data],
},
{"role": "Assistant", "content": ""},
]
pil_images = [Image.open(io.BytesIO(image_data))]
prepare_inputs = vl_chat_processor(
conversations=conversation, images=pil_images, force_batchify=True
).to(device, dtype=dtype)
inputs_embeds = vl_gpt.prepare_inputs_embeds(**prepare_inputs)
outputs = vl_gpt.language_model.generate(
inputs_embeds=inputs_embeds,
attention_mask=prepare_inputs.attention_mask,
pad_token_id=tokenizer.eos_token_id,
bos_token_id=tokenizer.bos_token_id,
eos_token_id=tokenizer.eos_token_id,
max_new_tokens=512,
do_sample=False if temperature == 0 else True,
use_cache=True,
temperature=temperature,
top_p=top_p,
)
answer = tokenizer.decode(outputs[0].cpu().tolist(), skip_special_tokens=True)
return answer
@app.post("/understand_image_and_question/")
async def understand_image_and_question(
file: UploadFile = File(...),
question: str = Form(...),
seed: int = Form(42),
top_p: float = Form(0.95),
temperature: float = Form(0.1)
):
image_data = await file.read()
response = multimodal_understanding(image_data, question, seed, top_p, temperature)
return JSONResponse({"response": response})
def generate(input_ids,
width,
height,
temperature: float = 1,
parallel_size: int = 5,
cfg_weight: float = 5,
image_token_num_per_image: int = 576,
patch_size: int = 16):
torch.cuda.empty_cache() if device == 'cuda' else None
tokens = torch.zeros((parallel_size * 2, len(input_ids)), dtype=torch.int).to(device)
for i in range(parallel_size * 2):
tokens[i, :] = input_ids
if i % 2 != 0:
tokens[i, 1:-1] = vl_chat_processor.pad_id
inputs_embeds = vl_gpt.language_model.get_input_embeddings()(tokens)
generated_tokens = torch.zeros((parallel_size, image_token_num_per_image), dtype=torch.int).to(device)
pkv = None
for i in range(image_token_num_per_image):
outputs = vl_gpt.language_model.model(inputs_embeds=inputs_embeds, use_cache=True, past_key_values=pkv)
pkv = outputs.past_key_values
hidden_states = outputs.last_hidden_state
logits = vl_gpt.gen_head(hidden_states[:, -1, :])
logit_cond = logits[0::2, :]
logit_uncond = logits[1::2, :]
logits = logit_uncond + cfg_weight * (logit_cond - logit_uncond)
probs = torch.softmax(logits / temperature, dim=-1)
next_token = torch.multinomial(probs, num_samples=1)
generated_tokens[:, i] = next_token.squeeze(dim=-1)
next_token = torch.cat([next_token.unsqueeze(dim=1), next_token.unsqueeze(dim=1)], dim=1).view(-1)
img_embeds = vl_gpt.prepare_gen_img_embeds(next_token)
inputs_embeds = img_embeds.unsqueeze(dim=1)
patches = vl_gpt.gen_vision_model.decode_code(
generated_tokens.to(dtype=torch.int),
shape=[parallel_size, 8, width // patch_size, height // patch_size]
)
return generated_tokens.to(dtype=torch.int), patches
def unpack(dec, width, height, parallel_size=5):
dec = dec.to(torch.float32).cpu().numpy().transpose(0, 2, 3, 1)
dec = np.clip((dec + 1) / 2 * 255, 0, 255)
visual_img = np.zeros((parallel_size, width, height, 3), dtype=np.uint8)
visual_img[:, :, :] = dec
return visual_img
@torch.inference_mode()
def generate_image(prompt, seed, guidance):
torch.cuda.empty_cache() if device == 'cuda' else None
seed = seed if seed is not None else 12345
torch.manual_seed(seed)
if device == 'cuda':
torch.cuda.manual_seed(seed)
np.random.seed(seed)
width = 384
height = 384
parallel_size = 5
with torch.no_grad():
messages = [{'role': 'User', 'content': prompt}, {'role': 'Assistant', 'content': ''}]
text = vl_chat_processor.apply_sft_template_for_multi_turn_prompts(
conversations=messages,
sft_format=vl_chat_processor.sft_format,
system_prompt=''
)
text = text + vl_chat_processor.image_start_tag
input_ids = torch.LongTensor(tokenizer.encode(text))
_, patches = generate(input_ids, width // 16 * 16, height // 16 * 16, cfg_weight=guidance, parallel_size=parallel_size)
images = unpack(patches, width // 16 * 16, height // 16 * 16)
return [Image.fromarray(images[i]).resize((1024, 1024), Image.LANCZOS) for i in range(parallel_size)]
@app.post("/generate_images/")
async def generate_images(
prompt: str = Form(...),
seed: int = Form(None),
guidance: float = Form(5.0),
):
try:
images = generate_image(prompt, seed, guidance)
def image_stream():
for img in images:
buf = io.BytesIO()
img.save(buf, format='PNG')
buf.seek(0)
yield buf.read()
return StreamingResponse(image_stream(), media_type="multipart/related")
except Exception as e:
raise HTTPException(status_code=500, detail=f"Image generation failed: {str(e)}")
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=8000)