Janus/demo/app_januspro.py
William S e944b2ea94
Update app_januspro.py
Change visual and device types (issues in MacOS and Windows 11 Version)
2025-01-29 18:48:35 -03:00

264 lines
10 KiB
Python

import gradio as gr
import torch
import inspect
from transformers import AutoConfig, AutoModelForCausalLM
from janus.models import MultiModalityCausalLM, VLChatProcessor
from PIL import Image
import numpy as np
import logging
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Device configuration
device = torch.device("cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu")
logger.info(f"Using device: {device}")
def load_processor(model_path):
"""Load and configure the VLChatProcessor with proper parameter filtering"""
# Get valid initialization parameters
init_params = inspect.getfullargspec(VLChatProcessor.__init__).args
init_params.remove('self')
# Load model config to find processor parameters
model_config = AutoConfig.from_pretrained(model_path)
processor_config = getattr(model_config, 'processor_config', {})
# Filter valid parameters
valid_config = {k: v for k, v in processor_config.items() if k in init_params}
return VLChatProcessor.from_pretrained(
model_path,
**valid_config,
legacy=False,
use_fast=True
)
def load_model():
"""Load the model with proper configuration and device management"""
model_path = "deepseek-ai/Janus-Pro-7B"
# Load model config
config = AutoConfig.from_pretrained(model_path)
config.language_config._attn_implementation = 'eager' if device.type == 'cpu' else 'flash_attention_2'
# Load model with mixed precision
torch_dtype = torch_dtype=torch.bfloat16 if torch.cuda.is_available() else torch.float16
vl_gpt = AutoModelForCausalLM.from_pretrained(
model_path,
config=config,
trust_remote_code=True,
torch_dtype=torch_dtype,
device_map="auto" if device.type != 'cpu' else None
)
# Load processor and tokenizer
vl_chat_processor = load_processor(model_path)
tokenizer = vl_chat_processor.tokenizer
if device.type == 'cuda':
vl_gpt = vl_gpt.to(device)
return vl_gpt, vl_chat_processor, tokenizer
try:
vl_gpt, vl_chat_processor, tokenizer = load_model()
except Exception as e:
logger.error(f"Failed to initialize model: {str(e)}")
raise
@torch.inference_mode()
def multimodal_understanding(image, question, seed=42, top_p=0.95, temperature=0.1, max_new_tokens=1024):
"""Handle multimodal understanding requests"""
try:
# Input processing
conversation = [{
"role": "<|User|>",
"content": f"<image_placeholder>\n{question}",
"images": [image]
}, {"role": "<|Assistant|>", "content": ""}]
# Process images and text
pil_images = [Image.fromarray(image).convert('RGB')]
prepare_inputs = vl_chat_processor(
conversations=conversation,
images=pil_images,
force_batchify=True
).to(device, dtype=vl_gpt.dtype)
# Generate response
outputs = vl_gpt.language_model.generate(
inputs_embeds=vl_gpt.prepare_inputs_embeds(**prepare_inputs),
attention_mask=prepare_inputs.attention_mask,
pad_token_id=tokenizer.eos_token_id,
bos_token_id=tokenizer.bos_token_id,
eos_token_id=tokenizer.eos_token_id,
max_new_tokens=max_new_tokens,
do_sample=temperature > 0,
temperature=temperature if temperature > 0 else None,
top_p=top_p if temperature > 0 else None,
use_cache=True
)
return tokenizer.decode(outputs[0], skip_special_tokens=True)
except Exception as e:
logger.error(f"Understanding error: {str(e)}")
return f"Error processing request: {str(e)}"
@torch.inference_mode()
def generate_image(prompt, seed=12345, guidance=5.0, temperature=1.0, parallel_size=4):
"""Handle image generation requests"""
try:
# Text processing
messages = [{'role': '<|User|>', 'content': prompt}, {'role': '<|Assistant|>', 'content': ''}]
text = vl_chat_processor.apply_sft_template_for_multi_turn_prompts(
conversations=messages,
sft_format=vl_chat_processor.sft_format,
system_prompt=''
) + vl_chat_processor.image_start_tag
# Generate image tokens
input_ids = torch.LongTensor(tokenizer.encode(text)).to(device)
generated_tokens, patches = generate(
input_ids=input_ids,
width=384,
height=384,
cfg_weight=guidance,
parallel_size=parallel_size,
temperature=temperature
)
# Process output images
images = unpack(patches, 384, 384, parallel_size)
return [Image.fromarray(img).resize((768, 768), Image.Resampling.LANCZOS) for img in images]
except Exception as e:
logger.error(f"Generation error: {str(e)}")
return []
def generate(input_ids, width, height, **kwargs):
"""Core image generation function"""
try:
parallel_size = kwargs.get('parallel_size', 4)
image_token_num_per_image = 576
# Initialize tokens
tokens = torch.stack([input_ids] * (parallel_size * 2), dim=0)
generated = torch.zeros((parallel_size, image_token_num_per_image),
dtype=torch.int, device=device)
inputs_embeds = vl_gpt.language_model.get_input_embeddings()(tokens)
pkv = None
for i in range(image_token_num_per_image):
outputs = vl_gpt.language_model.model(
inputs_embeds=inputs_embeds,
past_key_values=pkv,
use_cache=True
)
pkv = outputs.past_key_values
logits = vl_gpt.gen_head(outputs.last_hidden_state[:, -1, :])
# Classifier-free guidance
logit_cond, logit_uncond = logits[0::2], logits[1::2]
logits = logit_uncond + kwargs['cfg_weight'] * (logit_cond - logit_uncond)
# Sampling
probs = torch.softmax(logits / kwargs['temperature'], dim=-1)
next_token = torch.multinomial(probs, 1)
generated[:, i] = next_token.squeeze()
# Prepare next input
inputs_embeds = vl_gpt.prepare_gen_img_embeds(
next_token.repeat(1, 2).view(-1)
).unsqueeze(1)
# Decode patches
return generated, vl_gpt.gen_vision_model.decode_code(
generated.to(torch.int),
shape=[parallel_size, 8, width//16, height//16]
)
except Exception as e:
logger.error(f"Generate core error: {str(e)}")
raise
def unpack(dec, width, height, parallel_size):
"""Convert model output to images"""
try:
dec = dec.float().cpu().numpy().transpose(0, 2, 3, 1)
dec = np.clip((dec + 1) * 127.5, 0, 255).astype(np.uint8)
return [dec[i] for i in range(parallel_size)]
except Exception as e:
logger.error(f"Unpack error: {str(e)}")
return [np.zeros((height, width, 3), dtype=np.uint8)] * parallel_size
# Gradio Interface
with gr.Blocks(title="Janus Pro 7B", theme=gr.themes.Soft()) as demo:
gr.Markdown("## 🖼️ Janus Pro 7B - Multimodal AI Assistant")
with gr.Tab("Image Understanding"):
with gr.Row():
with gr.Column():
image_input = gr.Image(label="Upload Image", type="numpy")
# examples_und = gr.Examples(
# examples=[
# ["explain this meme", "images/doge.png"],
# ["Convert the formula into latex code", "images/equation.png"]
# ],
# inputs=[gr.Textbox(), image_input], # Use component references
# label="Example Queries"
# )
with gr.Column():
question_input = gr.Textbox(label="Question", placeholder="Ask about the image...")
with gr.Accordion("Advanced Settings", open=False):
und_seed = gr.Number(42, label="Seed", precision=0)
top_p = gr.Slider(0, 1, 0.95, label="Top-p Sampling")
temperature = gr.Slider(0, 1, 0.1, label="Temperature")
max_tokens = gr.Slider(128, 2048, 1024, step=128, label="Max Tokens")
understanding_button = gr.Button("Analyze", variant="primary")
understanding_output = gr.Textbox(label="Response", interactive=False)
with gr.Tab("Image Generation"):
with gr.Row():
with gr.Column():
prompt_input = gr.Textbox(label="Prompt", placeholder="Describe your image...", lines=3)
examples_t2i = gr.Examples(
examples=[
"Master shifu raccoon wearing streetwear",
"Astronaut in a jungle, detailed 8k rendering"
],
inputs=prompt_input,
label="Example Prompts"
)
with gr.Accordion("Advanced Settings", open=False):
cfg_weight = gr.Slider(1, 10, 5.0, label="CFG Weight")
t2i_temp = gr.Slider(0, 2, 1.0, label="Temperature")
seed_input = gr.Number(12345, label="Seed", precision=0)
parallel_size = gr.Slider(1, 8, 4, step=1, label="Batch Size")
generation_button = gr.Button("Generate", variant="primary")
with gr.Column():
image_output = gr.Gallery(label="Generated Images", columns=2, height=600)
# Event handlers
understanding_button.click(
multimodal_understanding,
inputs=[image_input, question_input, und_seed, top_p, temperature, max_tokens],
outputs=understanding_output
)
generation_button.click(
generate_image,
inputs=[prompt_input, seed_input, cfg_weight, t2i_temp, parallel_size],
outputs=image_output
)
if __name__ == "__main__":
demo.queue(concurrency_count=2).launch(
server_name="127.0.0.1",
server_port=7920,
share=False
)