mirror of
https://github.com/deepseek-ai/Janus.git
synced 2025-02-23 06:08:59 -05:00
- Added app_januspro_mps.py: optimized for Apple MPS, with automatic device selection - Fixed dtype mismatch issues in vq_model.py to ensure stability on MPS - Updated README.md to document MPS improvements and call for community testing - Contribution based on community testing and AI-assisted debugging
324 lines
10 KiB
Python
324 lines
10 KiB
Python
"""
|
|
app_januspro_v4.py
|
|
|
|
An updated version of your Janus Pro demo script forcing float16 on MPS,
|
|
ensuring the main model and the vision submodule share the same dtype.
|
|
"""
|
|
|
|
import gradio as gr
|
|
import torch
|
|
from transformers import AutoConfig, AutoModelForCausalLM
|
|
from janus.models import MultiModalityCausalLM, VLChatProcessor
|
|
from janus.utils.io import load_pil_images
|
|
from PIL import Image
|
|
import numpy as np
|
|
import os
|
|
import time
|
|
|
|
# 1. Detect device (cuda vs. mps vs. cpu)
|
|
if torch.cuda.is_available():
|
|
device = "cuda"
|
|
elif torch.backends.mps.is_available():
|
|
device = "mps"
|
|
else:
|
|
device = "cpu"
|
|
|
|
# 2. Choose dtype
|
|
# - We'll use bfloat16 on CUDA if you prefer that, but you can use float16 if desired.
|
|
# - We force float16 on MPS to avoid any mismatch. CPU -> float32 fallback.
|
|
if device == "cuda":
|
|
dtype = torch.bfloat16 # or torch.float16 if you want half on CUDA
|
|
elif device == "mps":
|
|
dtype = torch.float16 # definitely float16 on Apple MPS to avoid mismatch
|
|
else:
|
|
dtype = torch.float32
|
|
|
|
print(f"Using device = {device}, dtype = {dtype}")
|
|
|
|
# 3. Load model config & model
|
|
model_path = "deepseek-ai/Janus-Pro-7B"
|
|
config = AutoConfig.from_pretrained(model_path)
|
|
|
|
# If needed, force some config changes:
|
|
language_config = config.language_config
|
|
language_config._attn_implementation = 'eager'
|
|
|
|
vl_gpt = AutoModelForCausalLM.from_pretrained(
|
|
model_path,
|
|
language_config=language_config,
|
|
trust_remote_code=True
|
|
)
|
|
|
|
# 4. Move entire model to the chosen device & dtype
|
|
vl_gpt = vl_gpt.to(device, dtype=dtype)
|
|
|
|
# 4a. Explicitly recast the vision submodule in case it didn't propagate
|
|
# This helps if the vision submodel is loaded or stored differently.
|
|
if hasattr(vl_gpt, "gen_vision_model"):
|
|
vl_gpt.gen_vision_model = vl_gpt.gen_vision_model.to(device, dtype=dtype)
|
|
|
|
# Debug prints: just to confirm
|
|
print(">>> Top-level param dtype:", next(vl_gpt.parameters()).dtype)
|
|
print(">>> Vision model param dtype:",
|
|
next(vl_gpt.gen_vision_model.parameters()).dtype if hasattr(vl_gpt, "gen_vision_model") else "N/A")
|
|
|
|
# 5. Load processor
|
|
vl_chat_processor = VLChatProcessor.from_pretrained(model_path)
|
|
tokenizer = vl_chat_processor.tokenizer
|
|
|
|
# 6. Utility to clear device cache (no-op for MPS/CPU)
|
|
def clear_device_cache():
|
|
if device == "cuda":
|
|
torch.cuda.empty_cache()
|
|
|
|
# 7. Unified seed setting
|
|
def set_seed(seed: int):
|
|
torch.manual_seed(seed)
|
|
np.random.seed(seed)
|
|
if device == "cuda":
|
|
torch.cuda.manual_seed(seed)
|
|
|
|
# 8. Multimodal Understanding
|
|
@torch.inference_mode()
|
|
def multimodal_understanding(image, question, seed, top_p, temperature):
|
|
clear_device_cache()
|
|
set_seed(int(seed))
|
|
|
|
conversation = [
|
|
{
|
|
"role": "<|User|>",
|
|
"content": f"<image_placeholder>\n{question}",
|
|
"images": [image],
|
|
},
|
|
{"role": "<|Assistant|>", "content": ""},
|
|
]
|
|
|
|
pil_images = [Image.fromarray(image)]
|
|
|
|
prepare_inputs = vl_chat_processor(
|
|
conversations=conversation,
|
|
images=pil_images,
|
|
force_batchify=True
|
|
).to(device=device, dtype=dtype)
|
|
|
|
inputs_embeds = vl_gpt.prepare_inputs_embeds(**prepare_inputs)
|
|
|
|
outputs = vl_gpt.language_model.generate(
|
|
inputs_embeds=inputs_embeds,
|
|
attention_mask=prepare_inputs.attention_mask,
|
|
pad_token_id=tokenizer.eos_token_id,
|
|
bos_token_id=tokenizer.bos_token_id,
|
|
eos_token_id=tokenizer.eos_token_id,
|
|
max_new_tokens=512,
|
|
do_sample=(False if temperature == 0 else True),
|
|
use_cache=True,
|
|
temperature=temperature,
|
|
top_p=top_p,
|
|
)
|
|
|
|
answer = tokenizer.decode(outputs[0].cpu().tolist(), skip_special_tokens=True)
|
|
return answer
|
|
|
|
# 9. Low-level image generation logic
|
|
def generate(input_ids,
|
|
width,
|
|
height,
|
|
temperature: float = 1,
|
|
parallel_size: int = 2,
|
|
cfg_weight: float = 5,
|
|
image_token_num_per_image: int = 576,
|
|
patch_size: int = 16):
|
|
clear_device_cache()
|
|
|
|
tokens = torch.zeros(
|
|
(parallel_size * 2, len(input_ids)),
|
|
dtype=torch.int,
|
|
device=device
|
|
)
|
|
for i in range(parallel_size * 2):
|
|
tokens[i, :] = input_ids
|
|
if i % 2 != 0:
|
|
tokens[i, 1:-1] = vl_chat_processor.pad_id
|
|
|
|
inputs_embeds = vl_gpt.language_model.get_input_embeddings()(tokens)
|
|
|
|
generated_tokens = torch.zeros(
|
|
(parallel_size, image_token_num_per_image),
|
|
dtype=torch.int,
|
|
device=device
|
|
)
|
|
|
|
pkv = None
|
|
|
|
for i in range(image_token_num_per_image):
|
|
with torch.no_grad():
|
|
outputs = vl_gpt.language_model.model(
|
|
inputs_embeds=inputs_embeds,
|
|
use_cache=True,
|
|
past_key_values=pkv
|
|
)
|
|
pkv = outputs.past_key_values
|
|
hidden_states = outputs.last_hidden_state
|
|
|
|
logits = vl_gpt.gen_head(hidden_states[:, -1, :])
|
|
|
|
# Conditioned vs. Unconditioned
|
|
logit_cond = logits[0::2, :]
|
|
logit_uncond = logits[1::2, :]
|
|
|
|
# Classifier-free guidance
|
|
logits = logit_uncond + cfg_weight * (logit_cond - logit_uncond)
|
|
|
|
# Sample
|
|
probs = torch.softmax(logits / temperature, dim=-1)
|
|
next_token = torch.multinomial(probs, num_samples=1)
|
|
generated_tokens[:, i] = next_token.squeeze(dim=-1)
|
|
|
|
# Next token also goes to uncond
|
|
next_token = torch.cat(
|
|
[next_token.unsqueeze(dim=1), next_token.unsqueeze(dim=1)],
|
|
dim=1
|
|
).view(-1)
|
|
|
|
img_embeds = vl_gpt.prepare_gen_img_embeds(next_token)
|
|
# Force the correct dtype if needed
|
|
if img_embeds.dtype != dtype:
|
|
img_embeds = img_embeds.to(dtype)
|
|
|
|
inputs_embeds = img_embeds.unsqueeze(dim=1)
|
|
|
|
patches = vl_gpt.gen_vision_model.decode_code(
|
|
generated_tokens.to(dtype=torch.int),
|
|
shape=[parallel_size, 8, width // patch_size, height // patch_size]
|
|
)
|
|
|
|
return generated_tokens.to(dtype=torch.int), patches
|
|
|
|
def unpack(dec, width, height, parallel_size=5):
|
|
dec = dec.to(torch.float32).cpu().numpy().transpose(0, 2, 3, 1)
|
|
dec = np.clip((dec + 1) / 2 * 255, 0, 255).astype(np.uint8)
|
|
|
|
visual_img = np.zeros((parallel_size, width, height, 3), dtype=np.uint8)
|
|
visual_img[:, :, :] = dec
|
|
return visual_img
|
|
|
|
# 10. Text-to-Image Generation
|
|
@torch.inference_mode()
|
|
def generate_image(prompt,
|
|
seed=None,
|
|
guidance=5,
|
|
t2i_temperature=1.0):
|
|
clear_device_cache()
|
|
|
|
if seed is not None:
|
|
set_seed(int(seed))
|
|
|
|
width = 384
|
|
height = 384
|
|
parallel_size = 2
|
|
|
|
with torch.no_grad():
|
|
messages = [
|
|
{'role': '<|User|>', 'content': prompt},
|
|
{'role': '<|Assistant|>', 'content': ''}
|
|
]
|
|
|
|
text = vl_chat_processor.apply_sft_template_for_multi_turn_prompts(
|
|
conversations=messages,
|
|
sft_format=vl_chat_processor.sft_format,
|
|
system_prompt=''
|
|
)
|
|
text = text + vl_chat_processor.image_start_tag
|
|
|
|
input_ids = torch.LongTensor(tokenizer.encode(text)).to(device)
|
|
|
|
output, patches = generate(
|
|
input_ids,
|
|
width=(width // 16 * 16),
|
|
height=(height // 16 * 16),
|
|
cfg_weight=guidance,
|
|
parallel_size=parallel_size,
|
|
temperature=t2i_temperature
|
|
)
|
|
|
|
images = unpack(
|
|
patches,
|
|
width=(width // 16 * 16),
|
|
height=(height // 16 * 16),
|
|
parallel_size=parallel_size
|
|
)
|
|
|
|
pil_images = [
|
|
Image.fromarray(images[i]).resize((768, 768), Image.LANCZOS)
|
|
for i in range(parallel_size)
|
|
]
|
|
return pil_images
|
|
|
|
# 11. Gradio Interface
|
|
with gr.Blocks() as demo:
|
|
gr.Markdown(value="# Multimodal Understanding")
|
|
with gr.Row():
|
|
image_input = gr.Image()
|
|
with gr.Column():
|
|
question_input = gr.Textbox(label="Question")
|
|
und_seed_input = gr.Number(label="Seed", precision=0, value=42)
|
|
top_p = gr.Slider(minimum=0, maximum=1, value=0.95, step=0.05, label="top_p")
|
|
temperature = gr.Slider(minimum=0, maximum=1, value=0.1, step=0.05, label="temperature")
|
|
|
|
understanding_button = gr.Button("Chat")
|
|
understanding_output = gr.Textbox(label="Response")
|
|
|
|
examples_inpainting = gr.Examples(
|
|
label="Multimodal Understanding examples",
|
|
examples=[
|
|
[
|
|
"explain this meme",
|
|
"images/doge.png",
|
|
],
|
|
[
|
|
"Convert the formula into latex code.",
|
|
"images/equation.png",
|
|
],
|
|
],
|
|
inputs=[question_input, image_input],
|
|
)
|
|
|
|
gr.Markdown(value="# Text-to-Image Generation")
|
|
|
|
with gr.Row():
|
|
cfg_weight_input = gr.Slider(minimum=1, maximum=10, value=5, step=0.5, label="CFG Weight")
|
|
t2i_temperature = gr.Slider(minimum=0, maximum=1, value=1.0, step=0.05, label="temperature")
|
|
|
|
prompt_input = gr.Textbox(label="Prompt. (More detail => better images!)")
|
|
seed_input = gr.Number(label="Seed (Optional)", precision=0, value=12345)
|
|
|
|
generation_button = gr.Button("Generate Images")
|
|
image_output = gr.Gallery(label="Generated Images", columns=2, rows=2, height=300)
|
|
|
|
examples_t2i = gr.Examples(
|
|
label="Text to image generation examples.",
|
|
examples=[
|
|
"Master shifu racoon wearing drip attire as a street gangster.",
|
|
"The face of a beautiful girl",
|
|
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
|
|
"A glass of red wine on a reflective surface.",
|
|
"A cute and adorable baby fox with big brown eyes...",
|
|
"The image features an intricately designed eye set against a circular backdrop...",
|
|
],
|
|
inputs=prompt_input,
|
|
)
|
|
|
|
understanding_button.click(
|
|
multimodal_understanding,
|
|
inputs=[image_input, question_input, und_seed_input, top_p, temperature],
|
|
outputs=understanding_output
|
|
)
|
|
|
|
generation_button.click(
|
|
fn=generate_image,
|
|
inputs=[prompt_input, seed_input, cfg_weight_input, t2i_temperature],
|
|
outputs=image_output
|
|
)
|
|
|
|
demo.launch(share=True)
|