improve Gradio interface and add seed handling

This commit is contained in:
Denis 2025-02-03 00:45:53 +02:00
parent 1daa72fa40
commit 26efa527ef

View File

@ -3,9 +3,8 @@ import torch
from transformers import AutoConfig, AutoModelForCausalLM from transformers import AutoConfig, AutoModelForCausalLM
from janus.models import MultiModalityCausalLM, VLChatProcessor from janus.models import MultiModalityCausalLM, VLChatProcessor
from PIL import Image from PIL import Image
import numpy as np import numpy as np
import random
# Load model and processor # Load model and processor
model_path = "deepseek-ai/Janus-1.3B" model_path = "deepseek-ai/Janus-1.3B"
@ -20,17 +19,23 @@ vl_gpt = vl_gpt.to(torch.bfloat16).cuda()
vl_chat_processor = VLChatProcessor.from_pretrained(model_path) vl_chat_processor = VLChatProcessor.from_pretrained(model_path)
tokenizer = vl_chat_processor.tokenizer tokenizer = vl_chat_processor.tokenizer
cuda_device = 'cuda' if torch.cuda.is_available() else 'cpu' cuda_device = 'cuda' if torch.cuda.is_available() else 'cpu'
# Helper function to set the random seed
def set_seed(seed):
torch.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
torch.cuda.manual_seed(seed)
# Multimodal Understanding function # Multimodal Understanding function
@torch.inference_mode() @torch.inference_mode()
# Multimodal Understanding function
def multimodal_understanding(image, question, seed, top_p, temperature): def multimodal_understanding(image, question, seed, top_p, temperature):
# Clear CUDA cache before generating # Clear CUDA cache before generating
torch.cuda.empty_cache() torch.cuda.empty_cache()
# set seed set_seed(seed)
torch.manual_seed(seed)
np.random.seed(seed)
torch.cuda.manual_seed(seed)
conversation = [ conversation = [
{ {
@ -46,7 +51,6 @@ def multimodal_understanding(image, question, seed, top_p, temperature):
conversations=conversation, images=pil_images, force_batchify=True conversations=conversation, images=pil_images, force_batchify=True
).to(cuda_device, dtype=torch.bfloat16 if torch.cuda.is_available() else torch.float16) ).to(cuda_device, dtype=torch.bfloat16 if torch.cuda.is_available() else torch.float16)
inputs_embeds = vl_gpt.prepare_inputs_embeds(**prepare_inputs) inputs_embeds = vl_gpt.prepare_inputs_embeds(**prepare_inputs)
outputs = vl_gpt.language_model.generate( outputs = vl_gpt.language_model.generate(
@ -66,69 +70,16 @@ def multimodal_understanding(image, question, seed, top_p, temperature):
return answer return answer
def generate(input_ids, # Generate images function
width,
height,
temperature: float = 1,
parallel_size: int = 5,
cfg_weight: float = 5,
image_token_num_per_image: int = 576,
patch_size: int = 16):
# Clear CUDA cache before generating
torch.cuda.empty_cache()
tokens = torch.zeros((parallel_size * 2, len(input_ids)), dtype=torch.int).to(cuda_device)
for i in range(parallel_size * 2):
tokens[i, :] = input_ids
if i % 2 != 0:
tokens[i, 1:-1] = vl_chat_processor.pad_id
inputs_embeds = vl_gpt.language_model.get_input_embeddings()(tokens)
generated_tokens = torch.zeros((parallel_size, image_token_num_per_image), dtype=torch.int).to(cuda_device)
pkv = None
for i in range(image_token_num_per_image):
outputs = vl_gpt.language_model.model(inputs_embeds=inputs_embeds,
use_cache=True,
past_key_values=pkv)
pkv = outputs.past_key_values
hidden_states = outputs.last_hidden_state
logits = vl_gpt.gen_head(hidden_states[:, -1, :])
logit_cond = logits[0::2, :]
logit_uncond = logits[1::2, :]
logits = logit_uncond + cfg_weight * (logit_cond - logit_uncond)
probs = torch.softmax(logits / temperature, dim=-1)
next_token = torch.multinomial(probs, num_samples=1)
generated_tokens[:, i] = next_token.squeeze(dim=-1)
next_token = torch.cat([next_token.unsqueeze(dim=1), next_token.unsqueeze(dim=1)], dim=1).view(-1)
img_embeds = vl_gpt.prepare_gen_img_embeds(next_token)
inputs_embeds = img_embeds.unsqueeze(dim=1)
patches = vl_gpt.gen_vision_model.decode_code(generated_tokens.to(dtype=torch.int),
shape=[parallel_size, 8, width // patch_size, height // patch_size])
return generated_tokens.to(dtype=torch.int), patches
def unpack(dec, width, height, parallel_size=5):
dec = dec.to(torch.float32).cpu().numpy().transpose(0, 2, 3, 1)
dec = np.clip((dec + 1) / 2 * 255, 0, 255)
visual_img = np.zeros((parallel_size, width, height, 3), dtype=np.uint8)
visual_img[:, :, :] = dec
return visual_img
@torch.inference_mode() @torch.inference_mode()
def generate_image(prompt, def generate_image(prompt, seed=None, guidance=5):
seed=None,
guidance=5):
# Clear CUDA cache and avoid tracking gradients # Clear CUDA cache and avoid tracking gradients
torch.cuda.empty_cache() torch.cuda.empty_cache()
# Set the seed for reproducible results # Set the seed for reproducible results
if seed is not None: if seed is not None:
torch.manual_seed(seed) set_seed(seed)
torch.cuda.manual_seed(seed)
np.random.seed(seed)
width = 384 width = 384
height = 384 height = 384
parallel_size = 5 parallel_size = 5
@ -153,11 +104,10 @@ def generate_image(prompt,
return [Image.fromarray(images[i]).resize((1024, 1024), Image.LANCZOS) for i in range(parallel_size)] return [Image.fromarray(images[i]).resize((1024, 1024), Image.LANCZOS) for i in range(parallel_size)]
# Gradio interface # Gradio interface
with gr.Blocks() as demo: with gr.Blocks() as demo:
gr.Markdown(value="# Multimodal Understanding") gr.Markdown(value="# Multimodal Understanding")
# with gr.Row():
with gr.Row(): with gr.Row():
image_input = gr.Image() image_input = gr.Image()
with gr.Column(): with gr.Column():
@ -184,11 +134,8 @@ with gr.Blocks() as demo:
inputs=[question_input, image_input], inputs=[question_input, image_input],
) )
gr.Markdown(value="# Text-to-Image Generation") gr.Markdown(value="# Text-to-Image Generation")
with gr.Row(): with gr.Row():
cfg_weight_input = gr.Slider(minimum=1, maximum=10, value=5, step=0.5, label="CFG Weight") cfg_weight_input = gr.Slider(minimum=1, maximum=10, value=5, step=0.5, label="CFG Weight")
@ -200,11 +147,10 @@ with gr.Blocks() as demo:
image_output = gr.Gallery(label="Generated Images", columns=2, rows=2, height=300) image_output = gr.Gallery(label="Generated Images", columns=2, rows=2, height=300)
examples_t2i = gr.Examples( examples_t2i = gr.Examples(
label="Text to image generation examples. (Tips for designing prompts: Adding description like 'digital art' at the end of the prompt or writing the prompt in more detail can help produce better images!)", label="Text to image generation examples",
examples=[ examples=[
"Master shifu racoon wearing drip attire as a street gangster.", "Master shifu racoon wearing drip attire as a street gangster.",
"A cute and adorable baby fox with big brown eyes, autumn leaves in the background enchanting,immortal,fluffy, shiny mane,Petals,fairyism,unreal engine 5 and Octane Render,highly detailed, photorealistic, cinematic, natural colors.", "A cute and adorable baby fox with big brown eyes...",
"The image features an intricately designed eye set against a circular backdrop adorned with ornate swirl patterns that evoke both realism and surrealism. At the center of attention is a strikingly vivid blue iris surrounded by delicate veins radiating outward from the pupil to create depth and intensity. The eyelashes are long and dark, casting subtle shadows on the skin around them which appears smooth yet slightly textured as if aged or weathered over time.\n\nAbove the eye, there's a stone-like structure resembling part of classical architecture, adding layers of mystery and timeless elegance to the composition. This architectural element contrasts sharply but harmoniously with the organic curves surrounding it. Below the eye lies another decorative motif reminiscent of baroque artistry, further enhancing the overall sense of eternity encapsulated within each meticulously crafted detail. \n\nOverall, the atmosphere exudes a mysterious aura intertwined seamlessly with elements suggesting timelessness, achieved through the juxtaposition of realistic textures and surreal artistic flourishes. Each component\u2014from the intricate designs framing the eye to the ancient-looking stone piece above\u2014contributes uniquely towards creating a visually captivating tableau imbued with enigmatic allure.",
], ],
inputs=prompt_input, inputs=prompt_input,
) )