mirror of
https://github.com/deepseek-ai/Janus.git
synced 2025-04-19 10:09:00 -04:00
improve Gradio interface and add seed handling
This commit is contained in:
parent
1daa72fa40
commit
26efa527ef
94
demo/app.py
94
demo/app.py
@ -3,9 +3,8 @@ import torch
|
|||||||
from transformers import AutoConfig, AutoModelForCausalLM
|
from transformers import AutoConfig, AutoModelForCausalLM
|
||||||
from janus.models import MultiModalityCausalLM, VLChatProcessor
|
from janus.models import MultiModalityCausalLM, VLChatProcessor
|
||||||
from PIL import Image
|
from PIL import Image
|
||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
import random
|
||||||
|
|
||||||
# Load model and processor
|
# Load model and processor
|
||||||
model_path = "deepseek-ai/Janus-1.3B"
|
model_path = "deepseek-ai/Janus-1.3B"
|
||||||
@ -20,17 +19,23 @@ vl_gpt = vl_gpt.to(torch.bfloat16).cuda()
|
|||||||
vl_chat_processor = VLChatProcessor.from_pretrained(model_path)
|
vl_chat_processor = VLChatProcessor.from_pretrained(model_path)
|
||||||
tokenizer = vl_chat_processor.tokenizer
|
tokenizer = vl_chat_processor.tokenizer
|
||||||
cuda_device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
cuda_device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
||||||
|
|
||||||
|
|
||||||
|
# Helper function to set the random seed
|
||||||
|
def set_seed(seed):
|
||||||
|
torch.manual_seed(seed)
|
||||||
|
np.random.seed(seed)
|
||||||
|
random.seed(seed)
|
||||||
|
torch.cuda.manual_seed(seed)
|
||||||
|
|
||||||
|
|
||||||
# Multimodal Understanding function
|
# Multimodal Understanding function
|
||||||
@torch.inference_mode()
|
@torch.inference_mode()
|
||||||
# Multimodal Understanding function
|
|
||||||
def multimodal_understanding(image, question, seed, top_p, temperature):
|
def multimodal_understanding(image, question, seed, top_p, temperature):
|
||||||
# Clear CUDA cache before generating
|
# Clear CUDA cache before generating
|
||||||
torch.cuda.empty_cache()
|
torch.cuda.empty_cache()
|
||||||
|
|
||||||
# set seed
|
set_seed(seed)
|
||||||
torch.manual_seed(seed)
|
|
||||||
np.random.seed(seed)
|
|
||||||
torch.cuda.manual_seed(seed)
|
|
||||||
|
|
||||||
conversation = [
|
conversation = [
|
||||||
{
|
{
|
||||||
@ -46,7 +51,6 @@ def multimodal_understanding(image, question, seed, top_p, temperature):
|
|||||||
conversations=conversation, images=pil_images, force_batchify=True
|
conversations=conversation, images=pil_images, force_batchify=True
|
||||||
).to(cuda_device, dtype=torch.bfloat16 if torch.cuda.is_available() else torch.float16)
|
).to(cuda_device, dtype=torch.bfloat16 if torch.cuda.is_available() else torch.float16)
|
||||||
|
|
||||||
|
|
||||||
inputs_embeds = vl_gpt.prepare_inputs_embeds(**prepare_inputs)
|
inputs_embeds = vl_gpt.prepare_inputs_embeds(**prepare_inputs)
|
||||||
|
|
||||||
outputs = vl_gpt.language_model.generate(
|
outputs = vl_gpt.language_model.generate(
|
||||||
@ -66,69 +70,16 @@ def multimodal_understanding(image, question, seed, top_p, temperature):
|
|||||||
return answer
|
return answer
|
||||||
|
|
||||||
|
|
||||||
def generate(input_ids,
|
# Generate images function
|
||||||
width,
|
|
||||||
height,
|
|
||||||
temperature: float = 1,
|
|
||||||
parallel_size: int = 5,
|
|
||||||
cfg_weight: float = 5,
|
|
||||||
image_token_num_per_image: int = 576,
|
|
||||||
patch_size: int = 16):
|
|
||||||
# Clear CUDA cache before generating
|
|
||||||
torch.cuda.empty_cache()
|
|
||||||
|
|
||||||
tokens = torch.zeros((parallel_size * 2, len(input_ids)), dtype=torch.int).to(cuda_device)
|
|
||||||
for i in range(parallel_size * 2):
|
|
||||||
tokens[i, :] = input_ids
|
|
||||||
if i % 2 != 0:
|
|
||||||
tokens[i, 1:-1] = vl_chat_processor.pad_id
|
|
||||||
inputs_embeds = vl_gpt.language_model.get_input_embeddings()(tokens)
|
|
||||||
generated_tokens = torch.zeros((parallel_size, image_token_num_per_image), dtype=torch.int).to(cuda_device)
|
|
||||||
|
|
||||||
pkv = None
|
|
||||||
for i in range(image_token_num_per_image):
|
|
||||||
outputs = vl_gpt.language_model.model(inputs_embeds=inputs_embeds,
|
|
||||||
use_cache=True,
|
|
||||||
past_key_values=pkv)
|
|
||||||
pkv = outputs.past_key_values
|
|
||||||
hidden_states = outputs.last_hidden_state
|
|
||||||
logits = vl_gpt.gen_head(hidden_states[:, -1, :])
|
|
||||||
logit_cond = logits[0::2, :]
|
|
||||||
logit_uncond = logits[1::2, :]
|
|
||||||
logits = logit_uncond + cfg_weight * (logit_cond - logit_uncond)
|
|
||||||
probs = torch.softmax(logits / temperature, dim=-1)
|
|
||||||
next_token = torch.multinomial(probs, num_samples=1)
|
|
||||||
generated_tokens[:, i] = next_token.squeeze(dim=-1)
|
|
||||||
next_token = torch.cat([next_token.unsqueeze(dim=1), next_token.unsqueeze(dim=1)], dim=1).view(-1)
|
|
||||||
img_embeds = vl_gpt.prepare_gen_img_embeds(next_token)
|
|
||||||
inputs_embeds = img_embeds.unsqueeze(dim=1)
|
|
||||||
patches = vl_gpt.gen_vision_model.decode_code(generated_tokens.to(dtype=torch.int),
|
|
||||||
shape=[parallel_size, 8, width // patch_size, height // patch_size])
|
|
||||||
|
|
||||||
return generated_tokens.to(dtype=torch.int), patches
|
|
||||||
|
|
||||||
def unpack(dec, width, height, parallel_size=5):
|
|
||||||
dec = dec.to(torch.float32).cpu().numpy().transpose(0, 2, 3, 1)
|
|
||||||
dec = np.clip((dec + 1) / 2 * 255, 0, 255)
|
|
||||||
|
|
||||||
visual_img = np.zeros((parallel_size, width, height, 3), dtype=np.uint8)
|
|
||||||
visual_img[:, :, :] = dec
|
|
||||||
|
|
||||||
return visual_img
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
@torch.inference_mode()
|
@torch.inference_mode()
|
||||||
def generate_image(prompt,
|
def generate_image(prompt, seed=None, guidance=5):
|
||||||
seed=None,
|
|
||||||
guidance=5):
|
|
||||||
# Clear CUDA cache and avoid tracking gradients
|
# Clear CUDA cache and avoid tracking gradients
|
||||||
torch.cuda.empty_cache()
|
torch.cuda.empty_cache()
|
||||||
|
|
||||||
# Set the seed for reproducible results
|
# Set the seed for reproducible results
|
||||||
if seed is not None:
|
if seed is not None:
|
||||||
torch.manual_seed(seed)
|
set_seed(seed)
|
||||||
torch.cuda.manual_seed(seed)
|
|
||||||
np.random.seed(seed)
|
|
||||||
width = 384
|
width = 384
|
||||||
height = 384
|
height = 384
|
||||||
parallel_size = 5
|
parallel_size = 5
|
||||||
@ -153,11 +104,10 @@ def generate_image(prompt,
|
|||||||
return [Image.fromarray(images[i]).resize((1024, 1024), Image.LANCZOS) for i in range(parallel_size)]
|
return [Image.fromarray(images[i]).resize((1024, 1024), Image.LANCZOS) for i in range(parallel_size)]
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
# Gradio interface
|
# Gradio interface
|
||||||
with gr.Blocks() as demo:
|
with gr.Blocks() as demo:
|
||||||
gr.Markdown(value="# Multimodal Understanding")
|
gr.Markdown(value="# Multimodal Understanding")
|
||||||
# with gr.Row():
|
|
||||||
with gr.Row():
|
with gr.Row():
|
||||||
image_input = gr.Image()
|
image_input = gr.Image()
|
||||||
with gr.Column():
|
with gr.Column():
|
||||||
@ -184,11 +134,8 @@ with gr.Blocks() as demo:
|
|||||||
inputs=[question_input, image_input],
|
inputs=[question_input, image_input],
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
gr.Markdown(value="# Text-to-Image Generation")
|
gr.Markdown(value="# Text-to-Image Generation")
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
with gr.Row():
|
with gr.Row():
|
||||||
cfg_weight_input = gr.Slider(minimum=1, maximum=10, value=5, step=0.5, label="CFG Weight")
|
cfg_weight_input = gr.Slider(minimum=1, maximum=10, value=5, step=0.5, label="CFG Weight")
|
||||||
|
|
||||||
@ -200,11 +147,10 @@ with gr.Blocks() as demo:
|
|||||||
image_output = gr.Gallery(label="Generated Images", columns=2, rows=2, height=300)
|
image_output = gr.Gallery(label="Generated Images", columns=2, rows=2, height=300)
|
||||||
|
|
||||||
examples_t2i = gr.Examples(
|
examples_t2i = gr.Examples(
|
||||||
label="Text to image generation examples. (Tips for designing prompts: Adding description like 'digital art' at the end of the prompt or writing the prompt in more detail can help produce better images!)",
|
label="Text to image generation examples",
|
||||||
examples=[
|
examples=[
|
||||||
"Master shifu racoon wearing drip attire as a street gangster.",
|
"Master shifu racoon wearing drip attire as a street gangster.",
|
||||||
"A cute and adorable baby fox with big brown eyes, autumn leaves in the background enchanting,immortal,fluffy, shiny mane,Petals,fairyism,unreal engine 5 and Octane Render,highly detailed, photorealistic, cinematic, natural colors.",
|
"A cute and adorable baby fox with big brown eyes...",
|
||||||
"The image features an intricately designed eye set against a circular backdrop adorned with ornate swirl patterns that evoke both realism and surrealism. At the center of attention is a strikingly vivid blue iris surrounded by delicate veins radiating outward from the pupil to create depth and intensity. The eyelashes are long and dark, casting subtle shadows on the skin around them which appears smooth yet slightly textured as if aged or weathered over time.\n\nAbove the eye, there's a stone-like structure resembling part of classical architecture, adding layers of mystery and timeless elegance to the composition. This architectural element contrasts sharply but harmoniously with the organic curves surrounding it. Below the eye lies another decorative motif reminiscent of baroque artistry, further enhancing the overall sense of eternity encapsulated within each meticulously crafted detail. \n\nOverall, the atmosphere exudes a mysterious aura intertwined seamlessly with elements suggesting timelessness, achieved through the juxtaposition of realistic textures and surreal artistic flourishes. Each component\u2014from the intricate designs framing the eye to the ancient-looking stone piece above\u2014contributes uniquely towards creating a visually captivating tableau imbued with enigmatic allure.",
|
|
||||||
],
|
],
|
||||||
inputs=prompt_input,
|
inputs=prompt_input,
|
||||||
)
|
)
|
||||||
|
Loading…
Reference in New Issue
Block a user