Janus/demo/fastapi_app.py

186 lines
6.8 KiB
Python
Raw Normal View History

2024-10-22 03:18:11 -04:00
from fastapi import FastAPI, File, Form, UploadFile, HTTPException
from fastapi.responses import JSONResponse, StreamingResponse
from fastapi.staticfiles import StaticFiles
2024-10-22 03:18:11 -04:00
import torch
from transformers import AutoConfig, AutoModelForCausalLM
from janus.models import MultiModalityCausalLM, VLChatProcessor
from PIL import Image
import numpy as np
import io
import os
2024-10-22 03:18:11 -04:00
# Resolve absolute path based on the script's location
BASE_DIR = os.path.dirname(os.path.abspath(__file__)) # This gets "demo/"
WEBUI_DIR = os.path.join(BASE_DIR, "webui") # Moves up to the project root
2024-10-22 03:18:11 -04:00
app = FastAPI()
app.mount("/webui", StaticFiles(directory=WEBUI_DIR, html=True), name="webui")
2024-10-22 03:18:11 -04:00
# Load model and processor
model_path = os.getenv("MODEL_NAME", "deepseek-ai/Janus-1.3B")
2024-10-22 03:18:11 -04:00
config = AutoConfig.from_pretrained(model_path)
language_config = config.language_config
language_config._attn_implementation = 'eager'
vl_gpt = AutoModelForCausalLM.from_pretrained(model_path,
language_config=language_config,
trust_remote_code=True)
vl_gpt = vl_gpt.to(torch.bfloat16).cuda()
vl_chat_processor = VLChatProcessor.from_pretrained(model_path)
tokenizer = vl_chat_processor.tokenizer
cuda_device = 'cuda' if torch.cuda.is_available() else 'cpu'
@torch.inference_mode()
def multimodal_understanding(image_data, question, seed, top_p, temperature):
torch.cuda.empty_cache()
torch.manual_seed(seed)
np.random.seed(seed)
torch.cuda.manual_seed(seed)
conversation = [
{
"role": "User",
"content": f"<image_placeholder>\n{question}",
"images": [image_data],
},
{"role": "Assistant", "content": ""},
]
pil_images = [Image.open(io.BytesIO(image_data))]
prepare_inputs = vl_chat_processor(
conversations=conversation, images=pil_images, force_batchify=True
).to(cuda_device, dtype=torch.bfloat16 if torch.cuda.is_available() else torch.float16)
inputs_embeds = vl_gpt.prepare_inputs_embeds(**prepare_inputs)
outputs = vl_gpt.language_model.generate(
inputs_embeds=inputs_embeds,
attention_mask=prepare_inputs.attention_mask,
pad_token_id=tokenizer.eos_token_id,
bos_token_id=tokenizer.bos_token_id,
eos_token_id=tokenizer.eos_token_id,
max_new_tokens=512,
do_sample=False if temperature == 0 else True,
use_cache=True,
temperature=temperature,
top_p=top_p,
)
answer = tokenizer.decode(outputs[0].cpu().tolist(), skip_special_tokens=True)
return answer
@app.post("/understand_image_and_question")
2024-10-22 03:18:11 -04:00
async def understand_image_and_question(
file: UploadFile = File(...),
question: str = Form(...),
seed: int = Form(42),
top_p: float = Form(0.95),
temperature: float = Form(0.1)
):
image_data = await file.read()
response = multimodal_understanding(image_data, question, seed, top_p, temperature)
return JSONResponse({"response": response})
def generate(input_ids,
width,
height,
temperature: float = 1,
parallel_size: int = 5,
cfg_weight: float = 5,
image_token_num_per_image: int = 576,
patch_size: int = 16):
torch.cuda.empty_cache()
tokens = torch.zeros((parallel_size * 2, len(input_ids)), dtype=torch.int).to(cuda_device)
for i in range(parallel_size * 2):
tokens[i, :] = input_ids
if i % 2 != 0:
tokens[i, 1:-1] = vl_chat_processor.pad_id
inputs_embeds = vl_gpt.language_model.get_input_embeddings()(tokens)
generated_tokens = torch.zeros((parallel_size, image_token_num_per_image), dtype=torch.int).to(cuda_device)
pkv = None
for i in range(image_token_num_per_image):
outputs = vl_gpt.language_model.model(inputs_embeds=inputs_embeds, use_cache=True, past_key_values=pkv)
pkv = outputs.past_key_values
hidden_states = outputs.last_hidden_state
logits = vl_gpt.gen_head(hidden_states[:, -1, :])
logit_cond = logits[0::2, :]
logit_uncond = logits[1::2, :]
logits = logit_uncond + cfg_weight * (logit_cond - logit_uncond)
probs = torch.softmax(logits / temperature, dim=-1)
next_token = torch.multinomial(probs, num_samples=1)
generated_tokens[:, i] = next_token.squeeze(dim=-1)
next_token = torch.cat([next_token.unsqueeze(dim=1), next_token.unsqueeze(dim=1)], dim=1).view(-1)
img_embeds = vl_gpt.prepare_gen_img_embeds(next_token)
inputs_embeds = img_embeds.unsqueeze(dim=1)
patches = vl_gpt.gen_vision_model.decode_code(
generated_tokens.to(dtype=torch.int),
shape=[parallel_size, 8, width // patch_size, height // patch_size]
)
return generated_tokens.to(dtype=torch.int), patches
def unpack(dec, width, height, parallel_size=5):
dec = dec.to(torch.float32).cpu().numpy().transpose(0, 2, 3, 1)
dec = np.clip((dec + 1) / 2 * 255, 0, 255)
visual_img = np.zeros((parallel_size, width, height, 3), dtype=np.uint8)
visual_img[:, :, :] = dec
return visual_img
@torch.inference_mode()
def generate_image(prompt, seed, guidance):
torch.cuda.empty_cache()
seed = seed if seed is not None else 12345
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
np.random.seed(seed)
width = 384
height = 384
parallel_size = 5
with torch.no_grad():
messages = [{'role': 'User', 'content': prompt}, {'role': 'Assistant', 'content': ''}]
text = vl_chat_processor.apply_sft_template_for_multi_turn_prompts(
conversations=messages,
sft_format=vl_chat_processor.sft_format,
system_prompt=''
)
text = text + vl_chat_processor.image_start_tag
input_ids = torch.LongTensor(tokenizer.encode(text))
_, patches = generate(input_ids, width // 16 * 16, height // 16 * 16, cfg_weight=guidance, parallel_size=parallel_size)
images = unpack(patches, width // 16 * 16, height // 16 * 16)
return [Image.fromarray(images[i]).resize((1024, 1024), Image.LANCZOS) for i in range(parallel_size)]
@app.post("/generate_images")
2024-10-22 03:18:11 -04:00
async def generate_images(
prompt: str = Form(...),
seed: int = Form(None),
guidance: float = Form(5.0),
):
try:
images = generate_image(prompt, seed, guidance)
def image_stream():
for img in images:
buf = io.BytesIO()
img.save(buf, format='PNG')
buf.seek(0)
yield buf.read()
return StreamingResponse(image_stream(), media_type="multipart/related")
except Exception as e:
raise HTTPException(status_code=500, detail=f"Image generation failed: {str(e)}")
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=8000)