mirror of
https://github.com/deepseek-ai/DreamCraft3D.git
synced 2025-02-23 14:28:55 -05:00
721 lines
27 KiB
Python
721 lines
27 KiB
Python
import os
|
|
import random
|
|
import sys
|
|
from contextlib import contextmanager
|
|
from dataclasses import dataclass, field
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
import torchvision.transforms.functional as TF
|
|
from diffusers import (
|
|
AutoencoderKL,
|
|
DDPMScheduler,
|
|
DPMSolverSinglestepScheduler,
|
|
UNet2DConditionModel,
|
|
)
|
|
from diffusers.loaders import AttnProcsLayers
|
|
from diffusers.models.attention_processor import LoRAAttnProcessor
|
|
from diffusers.models.embeddings import TimestepEmbedding
|
|
from PIL import Image
|
|
from tqdm import tqdm
|
|
|
|
import threestudio
|
|
from extern.zero123 import Zero123Pipeline
|
|
from threestudio.models.networks import ToDTypeWrapper
|
|
from threestudio.models.prompt_processors.base import PromptProcessorOutput
|
|
from threestudio.utils.base import BaseModule
|
|
from threestudio.utils.misc import C, cleanup, enable_gradient, parse_version
|
|
from threestudio.utils.typing import *
|
|
|
|
|
|
@threestudio.register("zero123-unified-guidance")
|
|
class Zero123UnifiedGuidance(BaseModule):
|
|
@dataclass
|
|
class Config(BaseModule.Config):
|
|
cache_dir: Optional[str] = None
|
|
local_files_only: Optional[bool] = False
|
|
|
|
# guidance type, in ["sds", "vsd"]
|
|
guidance_type: str = "sds"
|
|
|
|
pretrained_model_name_or_path: str = "bennyguo/zero123-diffusers"
|
|
guidance_scale: float = 5.0
|
|
weighting_strategy: str = "dreamfusion"
|
|
|
|
min_step_percent: Any = 0.02
|
|
max_step_percent: Any = 0.98
|
|
grad_clip: Optional[Any] = None
|
|
|
|
return_rgb_1step_orig: bool = False
|
|
return_rgb_multistep_orig: bool = False
|
|
n_rgb_multistep_orig_steps: int = 4
|
|
|
|
cond_image_path: str = ""
|
|
cond_elevation_deg: float = 0.0
|
|
cond_azimuth_deg: float = 0.0
|
|
cond_camera_distance: float = 1.2
|
|
|
|
# efficiency-related configurations
|
|
half_precision_weights: bool = True
|
|
|
|
# VSD configurations, only used when guidance_type is "vsd"
|
|
vsd_phi_model_name_or_path: Optional[str] = None
|
|
vsd_guidance_scale_phi: float = 1.0
|
|
vsd_use_lora: bool = True
|
|
vsd_lora_cfg_training: bool = False
|
|
vsd_lora_n_timestamp_samples: int = 1
|
|
vsd_use_camera_condition: bool = True
|
|
# camera condition type, in ["extrinsics", "mvp", "spherical"]
|
|
vsd_camera_condition_type: Optional[str] = "extrinsics"
|
|
|
|
cfg: Config
|
|
|
|
def configure(self) -> None:
|
|
self.min_step: Optional[int] = None
|
|
self.max_step: Optional[int] = None
|
|
self.grad_clip_val: Optional[float] = None
|
|
|
|
@dataclass
|
|
class NonTrainableModules:
|
|
pipe: Zero123Pipeline
|
|
pipe_phi: Optional[Zero123Pipeline] = None
|
|
|
|
self.weights_dtype = (
|
|
torch.float16 if self.cfg.half_precision_weights else torch.float32
|
|
)
|
|
|
|
threestudio.info(f"Loading Zero123 ...")
|
|
|
|
# need to make sure the pipeline file is in path
|
|
sys.path.append("extern/")
|
|
|
|
pipe_kwargs = {
|
|
"safety_checker": None,
|
|
"requires_safety_checker": False,
|
|
"variant": "fp16" if self.cfg.half_precision_weights else None,
|
|
"torch_dtype": self.weights_dtype,
|
|
"cache_dir": self.cfg.cache_dir,
|
|
"local_files_only": self.cfg.local_files_only,
|
|
}
|
|
pipe = Zero123Pipeline.from_pretrained(
|
|
self.cfg.pretrained_model_name_or_path,
|
|
**pipe_kwargs,
|
|
).to(self.device)
|
|
self.prepare_pipe(pipe)
|
|
|
|
# phi network for VSD
|
|
# introduce two trainable modules:
|
|
# - self.camera_embedding
|
|
# - self.lora_layers
|
|
pipe_phi = None
|
|
|
|
# if the phi network shares the same unet with the pretrain network
|
|
# we need to pass additional cross attention kwargs to the unet
|
|
self.vsd_share_model = (
|
|
self.cfg.guidance_type == "vsd"
|
|
and self.cfg.vsd_phi_model_name_or_path is None
|
|
)
|
|
if self.cfg.guidance_type == "vsd":
|
|
if self.cfg.vsd_phi_model_name_or_path is None:
|
|
pipe_phi = pipe
|
|
else:
|
|
pipe_phi = Zero123Pipeline.from_pretrained(
|
|
self.cfg.vsd_phi_model_name_or_path,
|
|
**pipe_kwargs,
|
|
).to(self.device)
|
|
self.prepare_pipe(pipe_phi)
|
|
|
|
# set up camera embedding
|
|
if self.cfg.vsd_use_camera_condition:
|
|
if self.cfg.vsd_camera_condition_type in ["extrinsics", "mvp"]:
|
|
self.camera_embedding_dim = 16
|
|
elif self.cfg.vsd_camera_condition_type == "spherical":
|
|
self.camera_embedding_dim = 4
|
|
else:
|
|
raise ValueError("Invalid camera condition type!")
|
|
|
|
# FIXME: hard-coded output dim
|
|
self.camera_embedding = ToDTypeWrapper(
|
|
TimestepEmbedding(self.camera_embedding_dim, 1280),
|
|
self.weights_dtype,
|
|
).to(self.device)
|
|
pipe_phi.unet.class_embedding = self.camera_embedding
|
|
|
|
if self.cfg.vsd_use_lora:
|
|
# set up LoRA layers
|
|
lora_attn_procs = {}
|
|
for name in pipe_phi.unet.attn_processors.keys():
|
|
cross_attention_dim = (
|
|
None
|
|
if name.endswith("attn1.processor")
|
|
else pipe_phi.unet.config.cross_attention_dim
|
|
)
|
|
if name.startswith("mid_block"):
|
|
hidden_size = pipe_phi.unet.config.block_out_channels[-1]
|
|
elif name.startswith("up_blocks"):
|
|
block_id = int(name[len("up_blocks.")])
|
|
hidden_size = list(
|
|
reversed(pipe_phi.unet.config.block_out_channels)
|
|
)[block_id]
|
|
elif name.startswith("down_blocks"):
|
|
block_id = int(name[len("down_blocks.")])
|
|
hidden_size = pipe_phi.unet.config.block_out_channels[block_id]
|
|
|
|
lora_attn_procs[name] = LoRAAttnProcessor(
|
|
hidden_size=hidden_size, cross_attention_dim=cross_attention_dim
|
|
)
|
|
|
|
pipe_phi.unet.set_attn_processor(lora_attn_procs)
|
|
|
|
self.lora_layers = AttnProcsLayers(pipe_phi.unet.attn_processors).to(
|
|
self.device
|
|
)
|
|
self.lora_layers._load_state_dict_pre_hooks.clear()
|
|
self.lora_layers._state_dict_hooks.clear()
|
|
|
|
threestudio.info(f"Loaded Stable Diffusion!")
|
|
|
|
self.scheduler = DDPMScheduler.from_config(pipe.scheduler.config)
|
|
self.num_train_timesteps = self.scheduler.config.num_train_timesteps
|
|
|
|
# q(z_t|x) = N(alpha_t x, sigma_t^2 I)
|
|
# in DDPM, alpha_t = sqrt(alphas_cumprod_t), sigma_t^2 = 1 - alphas_cumprod_t
|
|
self.alphas_cumprod: Float[Tensor, "T"] = self.scheduler.alphas_cumprod.to(
|
|
self.device
|
|
)
|
|
self.alphas: Float[Tensor, "T"] = self.alphas_cumprod**0.5
|
|
self.sigmas: Float[Tensor, "T"] = (1 - self.alphas_cumprod) ** 0.5
|
|
# log SNR
|
|
self.lambdas: Float[Tensor, "T"] = self.sigmas / self.alphas
|
|
|
|
self._non_trainable_modules = NonTrainableModules(
|
|
pipe=pipe,
|
|
pipe_phi=pipe_phi,
|
|
)
|
|
|
|
# self.clip_image_embeddings and self.image_latents
|
|
self.prepare_image_embeddings()
|
|
|
|
@property
|
|
def pipe(self) -> Zero123Pipeline:
|
|
return self._non_trainable_modules.pipe
|
|
|
|
@property
|
|
def pipe_phi(self) -> Zero123Pipeline:
|
|
if self._non_trainable_modules.pipe_phi is None:
|
|
raise RuntimeError("phi model is not available.")
|
|
return self._non_trainable_modules.pipe_phi
|
|
|
|
def prepare_pipe(self, pipe: Zero123Pipeline):
|
|
cleanup()
|
|
|
|
pipe.image_encoder.eval()
|
|
pipe.vae.eval()
|
|
pipe.unet.eval()
|
|
pipe.clip_camera_projection.eval()
|
|
|
|
enable_gradient(pipe.image_encoder, enabled=False)
|
|
enable_gradient(pipe.vae, enabled=False)
|
|
enable_gradient(pipe.unet, enabled=False)
|
|
enable_gradient(pipe.clip_camera_projection, enabled=False)
|
|
|
|
# disable progress bar
|
|
pipe.set_progress_bar_config(disable=True)
|
|
|
|
def prepare_image_embeddings(self) -> None:
|
|
if not os.path.exists(self.cfg.cond_image_path):
|
|
raise RuntimeError(
|
|
f"Condition image not found at {self.cfg.cond_image_path}"
|
|
)
|
|
image = Image.open(self.cfg.cond_image_path).convert("RGBA").resize((256, 256))
|
|
image = (
|
|
TF.to_tensor(image)
|
|
.unsqueeze(0)
|
|
.to(device=self.device, dtype=self.weights_dtype)
|
|
)
|
|
# rgba -> rgb, apply white background
|
|
image = image[:, :3] * image[:, 3:4] + (1 - image[:, 3:4])
|
|
|
|
with torch.no_grad():
|
|
self.clip_image_embeddings: Float[
|
|
Tensor, "1 1 D"
|
|
] = self.extract_clip_image_embeddings(image)
|
|
|
|
# encoded latents should be multiplied with vae.config.scaling_factor
|
|
# but zero123 was not trained this way
|
|
self.image_latents: Float[Tensor, "1 4 Hl Wl"] = (
|
|
self.vae_encode(self.pipe.vae, image * 2.0 - 1.0, mode=True)
|
|
/ self.pipe.vae.config.scaling_factor
|
|
)
|
|
|
|
def extract_clip_image_embeddings(
|
|
self, images: Float[Tensor, "B 3 H W"]
|
|
) -> Float[Tensor, "B 1 D"]:
|
|
# expect images in [0, 1]
|
|
images_pil = [TF.to_pil_image(image) for image in images]
|
|
images_processed = self.pipe.feature_extractor(
|
|
images=images_pil, return_tensors="pt"
|
|
).pixel_values.to(device=self.device, dtype=self.weights_dtype)
|
|
clip_image_embeddings = self.pipe.image_encoder(images_processed).image_embeds
|
|
return clip_image_embeddings.to(images.dtype)
|
|
|
|
def get_image_camera_embeddings(
|
|
self,
|
|
elevation_deg: Float[Tensor, "B"],
|
|
azimuth_deg: Float[Tensor, "B"],
|
|
camera_distances: Float[Tensor, "B"],
|
|
) -> Float[Tensor, "B 1 D"]:
|
|
batch_size = elevation_deg.shape[0]
|
|
camera_embeddings: Float[Tensor, "B 1 4"] = torch.stack(
|
|
[
|
|
torch.deg2rad(self.cfg.cond_elevation_deg - elevation_deg),
|
|
torch.sin(torch.deg2rad(azimuth_deg - self.cfg.cond_azimuth_deg)),
|
|
torch.cos(torch.deg2rad(azimuth_deg - self.cfg.cond_azimuth_deg)),
|
|
camera_distances - self.cfg.cond_camera_distance,
|
|
],
|
|
dim=-1,
|
|
)[:, None, :]
|
|
|
|
image_camera_embeddings = self.pipe.clip_camera_projection(
|
|
torch.cat(
|
|
[
|
|
self.clip_image_embeddings.repeat(batch_size, 1, 1),
|
|
camera_embeddings,
|
|
],
|
|
dim=-1,
|
|
).to(self.weights_dtype)
|
|
)
|
|
|
|
return image_camera_embeddings
|
|
|
|
@torch.cuda.amp.autocast(enabled=False)
|
|
def forward_unet(
|
|
self,
|
|
unet: UNet2DConditionModel,
|
|
latents: Float[Tensor, "..."],
|
|
t: Int[Tensor, "..."],
|
|
encoder_hidden_states: Float[Tensor, "..."],
|
|
class_labels: Optional[Float[Tensor, "..."]] = None,
|
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
|
down_block_additional_residuals: Optional[Float[Tensor, "..."]] = None,
|
|
mid_block_additional_residual: Optional[Float[Tensor, "..."]] = None,
|
|
velocity_to_epsilon: bool = False,
|
|
) -> Float[Tensor, "..."]:
|
|
input_dtype = latents.dtype
|
|
pred = unet(
|
|
latents.to(unet.dtype),
|
|
t.to(unet.dtype),
|
|
encoder_hidden_states=encoder_hidden_states.to(unet.dtype),
|
|
class_labels=class_labels,
|
|
cross_attention_kwargs=cross_attention_kwargs,
|
|
down_block_additional_residuals=down_block_additional_residuals,
|
|
mid_block_additional_residual=mid_block_additional_residual,
|
|
).sample
|
|
if velocity_to_epsilon:
|
|
pred = latents * self.sigmas[t].view(-1, 1, 1, 1) + pred * self.alphas[
|
|
t
|
|
].view(-1, 1, 1, 1)
|
|
return pred.to(input_dtype)
|
|
|
|
@torch.cuda.amp.autocast(enabled=False)
|
|
def vae_encode(
|
|
self, vae: AutoencoderKL, imgs: Float[Tensor, "B 3 H W"], mode=False
|
|
) -> Float[Tensor, "B 4 Hl Wl"]:
|
|
# expect input in [-1, 1]
|
|
input_dtype = imgs.dtype
|
|
posterior = vae.encode(imgs.to(vae.dtype)).latent_dist
|
|
if mode:
|
|
latents = posterior.mode()
|
|
else:
|
|
latents = posterior.sample()
|
|
latents = latents * vae.config.scaling_factor
|
|
return latents.to(input_dtype)
|
|
|
|
@torch.cuda.amp.autocast(enabled=False)
|
|
def vae_decode(
|
|
self, vae: AutoencoderKL, latents: Float[Tensor, "B 4 Hl Wl"]
|
|
) -> Float[Tensor, "B 3 H W"]:
|
|
# output in [0, 1]
|
|
input_dtype = latents.dtype
|
|
latents = 1 / vae.config.scaling_factor * latents
|
|
image = vae.decode(latents.to(vae.dtype)).sample
|
|
image = (image * 0.5 + 0.5).clamp(0, 1)
|
|
return image.to(input_dtype)
|
|
|
|
@contextmanager
|
|
def disable_unet_class_embedding(self, unet: UNet2DConditionModel):
|
|
class_embedding = unet.class_embedding
|
|
try:
|
|
unet.class_embedding = None
|
|
yield unet
|
|
finally:
|
|
unet.class_embedding = class_embedding
|
|
|
|
@contextmanager
|
|
def set_scheduler(self, pipe: Zero123Pipeline, scheduler_class: Any, **kwargs):
|
|
scheduler_orig = pipe.scheduler
|
|
pipe.scheduler = scheduler_class.from_config(scheduler_orig.config, **kwargs)
|
|
yield pipe
|
|
pipe.scheduler = scheduler_orig
|
|
|
|
def get_eps_pretrain(
|
|
self,
|
|
latents_noisy: Float[Tensor, "B 4 Hl Wl"],
|
|
t: Int[Tensor, "B"],
|
|
image_camera_embeddings: Float[Tensor, "B 1 D"],
|
|
elevation: Float[Tensor, "B"],
|
|
azimuth: Float[Tensor, "B"],
|
|
camera_distances: Float[Tensor, "B"],
|
|
) -> Float[Tensor, "B 4 Hl Wl"]:
|
|
batch_size = latents_noisy.shape[0]
|
|
|
|
with torch.no_grad():
|
|
with self.disable_unet_class_embedding(self.pipe.unet) as unet:
|
|
noise_pred = self.forward_unet(
|
|
unet,
|
|
torch.cat(
|
|
[
|
|
torch.cat([latents_noisy] * 2, dim=0),
|
|
torch.cat(
|
|
[
|
|
self.image_latents.repeat(batch_size, 1, 1, 1),
|
|
torch.zeros_like(self.image_latents).repeat(
|
|
batch_size, 1, 1, 1
|
|
),
|
|
],
|
|
dim=0,
|
|
),
|
|
],
|
|
dim=1,
|
|
),
|
|
torch.cat([t] * 2, dim=0),
|
|
encoder_hidden_states=torch.cat(
|
|
[
|
|
image_camera_embeddings,
|
|
torch.zeros_like(image_camera_embeddings),
|
|
],
|
|
dim=0,
|
|
),
|
|
cross_attention_kwargs={"scale": 0.0}
|
|
if self.vsd_share_model
|
|
else None,
|
|
velocity_to_epsilon=self.pipe.scheduler.config.prediction_type
|
|
== "v_prediction",
|
|
)
|
|
|
|
noise_pred_image, noise_pred_uncond = noise_pred.chunk(2)
|
|
noise_pred = noise_pred_uncond + self.cfg.guidance_scale * (
|
|
noise_pred_image - noise_pred_uncond
|
|
)
|
|
|
|
return noise_pred
|
|
|
|
def get_eps_phi(
|
|
self,
|
|
latents_noisy: Float[Tensor, "B 4 Hl Wl"],
|
|
t: Int[Tensor, "B"],
|
|
image_camera_embeddings: Float[Tensor, "B 1 D"],
|
|
elevation: Float[Tensor, "B"],
|
|
azimuth: Float[Tensor, "B"],
|
|
camera_distances: Float[Tensor, "B"],
|
|
camera_condition: Float[Tensor, "B ..."],
|
|
) -> Float[Tensor, "B 4 Hl Wl"]:
|
|
batch_size = latents_noisy.shape[0]
|
|
|
|
with torch.no_grad():
|
|
noise_pred = self.forward_unet(
|
|
self.pipe_phi.unet,
|
|
torch.cat(
|
|
[
|
|
torch.cat([latents_noisy] * 2, dim=0),
|
|
torch.cat(
|
|
[self.image_latents.repeat(batch_size, 1, 1, 1)] * 2,
|
|
dim=0,
|
|
),
|
|
],
|
|
dim=1,
|
|
),
|
|
torch.cat([t] * 2, dim=0),
|
|
encoder_hidden_states=torch.cat([image_camera_embeddings] * 2, dim=0),
|
|
class_labels=torch.cat(
|
|
[
|
|
camera_condition.view(batch_size, -1),
|
|
torch.zeros_like(camera_condition.view(batch_size, -1)),
|
|
],
|
|
dim=0,
|
|
)
|
|
if self.cfg.vsd_use_camera_condition
|
|
else None,
|
|
cross_attention_kwargs={"scale": 1.0},
|
|
velocity_to_epsilon=self.pipe_phi.scheduler.config.prediction_type
|
|
== "v_prediction",
|
|
)
|
|
|
|
noise_pred_camera, noise_pred_uncond = noise_pred.chunk(2)
|
|
noise_pred = noise_pred_uncond + self.cfg.vsd_guidance_scale_phi * (
|
|
noise_pred_camera - noise_pred_uncond
|
|
)
|
|
|
|
return noise_pred
|
|
|
|
def train_phi(
|
|
self,
|
|
latents: Float[Tensor, "B 4 Hl Wl"],
|
|
image_camera_embeddings: Float[Tensor, "B 1 D"],
|
|
elevation: Float[Tensor, "B"],
|
|
azimuth: Float[Tensor, "B"],
|
|
camera_distances: Float[Tensor, "B"],
|
|
camera_condition: Float[Tensor, "B ..."],
|
|
):
|
|
B = latents.shape[0]
|
|
latents = latents.detach().repeat(
|
|
self.cfg.vsd_lora_n_timestamp_samples, 1, 1, 1
|
|
)
|
|
|
|
num_train_timesteps = self.pipe_phi.scheduler.config.num_train_timesteps
|
|
t = torch.randint(
|
|
int(num_train_timesteps * 0.0),
|
|
int(num_train_timesteps * 1.0),
|
|
[B * self.cfg.vsd_lora_n_timestamp_samples],
|
|
dtype=torch.long,
|
|
device=self.device,
|
|
)
|
|
|
|
noise = torch.randn_like(latents)
|
|
latents_noisy = self.pipe_phi.scheduler.add_noise(latents, noise, t)
|
|
if self.pipe_phi.scheduler.config.prediction_type == "epsilon":
|
|
target = noise
|
|
elif self.pipe_phi.scheduler.prediction_type == "v_prediction":
|
|
target = self.pipe_phi.scheduler.get_velocity(latents, noise, t)
|
|
else:
|
|
raise ValueError(
|
|
f"Unknown prediction type {self.pipe_phi.scheduler.prediction_type}"
|
|
)
|
|
|
|
if (
|
|
self.cfg.vsd_use_camera_condition
|
|
and self.cfg.vsd_lora_cfg_training
|
|
and random.random() < 0.1
|
|
):
|
|
camera_condition = torch.zeros_like(camera_condition)
|
|
|
|
noise_pred = self.forward_unet(
|
|
self.pipe_phi.unet,
|
|
torch.cat([latents_noisy, self.image_latents.repeat(B, 1, 1, 1)], dim=1),
|
|
t,
|
|
encoder_hidden_states=image_camera_embeddings.repeat(
|
|
self.cfg.vsd_lora_n_timestamp_samples, 1, 1
|
|
),
|
|
class_labels=camera_condition.view(B, -1).repeat(
|
|
self.cfg.vsd_lora_n_timestamp_samples, 1
|
|
)
|
|
if self.cfg.vsd_use_camera_condition
|
|
else None,
|
|
cross_attention_kwargs={"scale": 1.0},
|
|
)
|
|
return F.mse_loss(noise_pred.float(), target.float(), reduction="mean")
|
|
|
|
def forward(
|
|
self,
|
|
rgb: Float[Tensor, "B H W C"],
|
|
elevation: Float[Tensor, "B"],
|
|
azimuth: Float[Tensor, "B"],
|
|
camera_distances: Float[Tensor, "B"],
|
|
mvp_mtx: Float[Tensor, "B 4 4"],
|
|
c2w: Float[Tensor, "B 4 4"],
|
|
rgb_as_latents=False,
|
|
**kwargs,
|
|
):
|
|
batch_size = rgb.shape[0]
|
|
|
|
rgb_BCHW = rgb.permute(0, 3, 1, 2)
|
|
latents: Float[Tensor, "B 4 32 32"]
|
|
if rgb_as_latents:
|
|
# treat input rgb as latents
|
|
# input rgb should be in range [-1, 1]
|
|
latents = F.interpolate(
|
|
rgb_BCHW, (32, 32), mode="bilinear", align_corners=False
|
|
)
|
|
else:
|
|
# treat input rgb as rgb
|
|
# input rgb should be in range [0, 1]
|
|
rgb_BCHW = F.interpolate(
|
|
rgb_BCHW, (256, 256), mode="bilinear", align_corners=False
|
|
)
|
|
# encode image into latents with vae
|
|
latents = self.vae_encode(self.pipe.vae, rgb_BCHW * 2.0 - 1.0)
|
|
|
|
# sample timestep
|
|
# use the same timestep for each batch
|
|
assert self.min_step is not None and self.max_step is not None
|
|
t = torch.randint(
|
|
self.min_step,
|
|
self.max_step + 1,
|
|
[1],
|
|
dtype=torch.long,
|
|
device=self.device,
|
|
).repeat(batch_size)
|
|
|
|
# sample noise
|
|
noise = torch.randn_like(latents)
|
|
latents_noisy = self.scheduler.add_noise(latents, noise, t)
|
|
|
|
# image-camera feature condition
|
|
image_camera_embeddings = self.get_image_camera_embeddings(
|
|
elevation, azimuth, camera_distances
|
|
)
|
|
|
|
eps_pretrain = self.get_eps_pretrain(
|
|
latents_noisy,
|
|
t,
|
|
image_camera_embeddings,
|
|
elevation,
|
|
azimuth,
|
|
camera_distances,
|
|
)
|
|
|
|
latents_1step_orig = (
|
|
1
|
|
/ self.alphas[t].view(-1, 1, 1, 1)
|
|
* (latents_noisy - self.sigmas[t].view(-1, 1, 1, 1) * eps_pretrain)
|
|
).detach()
|
|
|
|
if self.cfg.guidance_type == "sds":
|
|
eps_phi = noise
|
|
elif self.cfg.guidance_type == "vsd":
|
|
if self.cfg.vsd_camera_condition_type == "extrinsics":
|
|
camera_condition = c2w
|
|
elif self.cfg.vsd_camera_condition_type == "mvp":
|
|
camera_condition = mvp_mtx
|
|
elif self.cfg.vsd_camera_condition_type == "spherical":
|
|
camera_condition = torch.stack(
|
|
[
|
|
torch.deg2rad(elevation),
|
|
torch.sin(torch.deg2rad(azimuth)),
|
|
torch.cos(torch.deg2rad(azimuth)),
|
|
camera_distances,
|
|
],
|
|
dim=-1,
|
|
)
|
|
else:
|
|
raise ValueError(
|
|
f"Unknown camera_condition_type {self.cfg.vsd_camera_condition_type}"
|
|
)
|
|
eps_phi = self.get_eps_phi(
|
|
latents_noisy,
|
|
t,
|
|
image_camera_embeddings,
|
|
elevation,
|
|
azimuth,
|
|
camera_distances,
|
|
camera_condition,
|
|
)
|
|
|
|
loss_train_phi = self.train_phi(
|
|
latents,
|
|
image_camera_embeddings,
|
|
elevation,
|
|
azimuth,
|
|
camera_distances,
|
|
camera_condition,
|
|
)
|
|
|
|
if self.cfg.weighting_strategy == "dreamfusion":
|
|
w = (1.0 - self.alphas[t]).view(-1, 1, 1, 1)
|
|
elif self.cfg.weighting_strategy == "uniform":
|
|
w = 1.0
|
|
elif self.cfg.weighting_strategy == "fantasia3d":
|
|
w = (self.alphas[t] ** 0.5 * (1 - self.alphas[t])).view(-1, 1, 1, 1)
|
|
else:
|
|
raise ValueError(
|
|
f"Unknown weighting strategy: {self.cfg.weighting_strategy}"
|
|
)
|
|
|
|
grad = w * (eps_pretrain - eps_phi)
|
|
|
|
if self.grad_clip_val is not None:
|
|
grad = grad.clamp(-self.grad_clip_val, self.grad_clip_val)
|
|
|
|
# reparameterization trick:
|
|
# d(loss)/d(latents) = latents - target = latents - (latents - grad) = grad
|
|
target = (latents - grad).detach()
|
|
loss_sd = 0.5 * F.mse_loss(latents, target, reduction="sum") / batch_size
|
|
|
|
guidance_out = {
|
|
"loss_sd": loss_sd,
|
|
"grad_norm": grad.norm(),
|
|
"timesteps": t,
|
|
"min_step": self.min_step,
|
|
"max_step": self.max_step,
|
|
"latents": latents,
|
|
"latents_1step_orig": latents_1step_orig,
|
|
"rgb": rgb_BCHW.permute(0, 2, 3, 1),
|
|
"weights": w,
|
|
"lambdas": self.lambdas[t],
|
|
}
|
|
|
|
if self.cfg.return_rgb_1step_orig:
|
|
with torch.no_grad():
|
|
rgb_1step_orig = self.vae_decode(
|
|
self.pipe.vae, latents_1step_orig
|
|
).permute(0, 2, 3, 1)
|
|
guidance_out.update({"rgb_1step_orig": rgb_1step_orig})
|
|
|
|
if self.cfg.return_rgb_multistep_orig:
|
|
with self.set_scheduler(
|
|
self.pipe,
|
|
DPMSolverSinglestepScheduler,
|
|
solver_order=1,
|
|
num_train_timesteps=int(t[0]),
|
|
) as pipe:
|
|
with torch.cuda.amp.autocast(enabled=False):
|
|
latents_multistep_orig = pipe(
|
|
num_inference_steps=self.cfg.n_rgb_multistep_orig_steps,
|
|
guidance_scale=self.cfg.guidance_scale,
|
|
eta=1.0,
|
|
latents=latents_noisy.to(pipe.unet.dtype),
|
|
image_camera_embeddings=image_camera_embeddings.to(
|
|
pipe.unet.dtype
|
|
),
|
|
image_latents=self.image_latents.repeat(batch_size, 1, 1, 1).to(
|
|
pipe.unet.dtype
|
|
),
|
|
cross_attention_kwargs={"scale": 0.0}
|
|
if self.vsd_share_model
|
|
else None,
|
|
output_type="latent",
|
|
).images.to(latents.dtype)
|
|
with torch.no_grad():
|
|
rgb_multistep_orig = self.vae_decode(
|
|
self.pipe.vae, latents_multistep_orig
|
|
)
|
|
guidance_out.update(
|
|
{
|
|
"latents_multistep_orig": latents_multistep_orig,
|
|
"rgb_multistep_orig": rgb_multistep_orig.permute(0, 2, 3, 1),
|
|
}
|
|
)
|
|
|
|
if self.cfg.guidance_type == "vsd":
|
|
guidance_out.update(
|
|
{
|
|
"loss_train_phi": loss_train_phi,
|
|
}
|
|
)
|
|
|
|
return guidance_out
|
|
|
|
def update_step(self, epoch: int, global_step: int, on_load_weights: bool = False):
|
|
# clip grad for stable training as demonstrated in
|
|
# Debiasing Scores and Prompts of 2D Diffusion for Robust Text-to-3D Generation
|
|
# http://arxiv.org/abs/2303.15413
|
|
if self.cfg.grad_clip is not None:
|
|
self.grad_clip_val = C(self.cfg.grad_clip, epoch, global_step)
|
|
|
|
self.min_step = int(
|
|
self.num_train_timesteps * C(self.cfg.min_step_percent, epoch, global_step)
|
|
)
|
|
self.max_step = int(
|
|
self.num_train_timesteps * C(self.cfg.max_step_percent, epoch, global_step)
|
|
) |