mirror of
https://github.com/deepseek-ai/DreamCraft3D.git
synced 2025-02-23 14:28:55 -05:00
713 lines
21 KiB
Python
Executable File
713 lines
21 KiB
Python
Executable File
from functools import partial
|
|
|
|
import clip
|
|
import kornia
|
|
import numpy as np
|
|
import torch
|
|
import torch.nn as nn
|
|
|
|
from extern.ldm_zero123.modules.x_transformer import ( # TODO: can we directly rely on lucidrains code and simply add this as a reuirement? --> test
|
|
Encoder,
|
|
TransformerWrapper,
|
|
)
|
|
from extern.ldm_zero123.util import default
|
|
|
|
|
|
class AbstractEncoder(nn.Module):
|
|
def __init__(self):
|
|
super().__init__()
|
|
|
|
def encode(self, *args, **kwargs):
|
|
raise NotImplementedError
|
|
|
|
|
|
class IdentityEncoder(AbstractEncoder):
|
|
def encode(self, x):
|
|
return x
|
|
|
|
|
|
class FaceClipEncoder(AbstractEncoder):
|
|
def __init__(self, augment=True, retreival_key=None):
|
|
super().__init__()
|
|
self.encoder = FrozenCLIPImageEmbedder()
|
|
self.augment = augment
|
|
self.retreival_key = retreival_key
|
|
|
|
def forward(self, img):
|
|
encodings = []
|
|
with torch.no_grad():
|
|
x_offset = 125
|
|
if self.retreival_key:
|
|
# Assumes retrieved image are packed into the second half of channels
|
|
face = img[:, 3:, 190:440, x_offset : (512 - x_offset)]
|
|
other = img[:, :3, ...].clone()
|
|
else:
|
|
face = img[:, :, 190:440, x_offset : (512 - x_offset)]
|
|
other = img.clone()
|
|
|
|
if self.augment:
|
|
face = K.RandomHorizontalFlip()(face)
|
|
|
|
other[:, :, 190:440, x_offset : (512 - x_offset)] *= 0
|
|
encodings = [
|
|
self.encoder.encode(face),
|
|
self.encoder.encode(other),
|
|
]
|
|
|
|
return torch.cat(encodings, dim=1)
|
|
|
|
def encode(self, img):
|
|
if isinstance(img, list):
|
|
# Uncondition
|
|
return torch.zeros(
|
|
(1, 2, 768), device=self.encoder.model.visual.conv1.weight.device
|
|
)
|
|
|
|
return self(img)
|
|
|
|
|
|
class FaceIdClipEncoder(AbstractEncoder):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.encoder = FrozenCLIPImageEmbedder()
|
|
for p in self.encoder.parameters():
|
|
p.requires_grad = False
|
|
self.id = FrozenFaceEncoder(
|
|
"/home/jpinkney/code/stable-diffusion/model_ir_se50.pth", augment=True
|
|
)
|
|
|
|
def forward(self, img):
|
|
encodings = []
|
|
with torch.no_grad():
|
|
face = kornia.geometry.resize(
|
|
img, (256, 256), interpolation="bilinear", align_corners=True
|
|
)
|
|
|
|
other = img.clone()
|
|
other[:, :, 184:452, 122:396] *= 0
|
|
encodings = [
|
|
self.id.encode(face),
|
|
self.encoder.encode(other),
|
|
]
|
|
|
|
return torch.cat(encodings, dim=1)
|
|
|
|
def encode(self, img):
|
|
if isinstance(img, list):
|
|
# Uncondition
|
|
return torch.zeros(
|
|
(1, 2, 768), device=self.encoder.model.visual.conv1.weight.device
|
|
)
|
|
|
|
return self(img)
|
|
|
|
|
|
class ClassEmbedder(nn.Module):
|
|
def __init__(self, embed_dim, n_classes=1000, key="class"):
|
|
super().__init__()
|
|
self.key = key
|
|
self.embedding = nn.Embedding(n_classes, embed_dim)
|
|
|
|
def forward(self, batch, key=None):
|
|
if key is None:
|
|
key = self.key
|
|
# this is for use in crossattn
|
|
c = batch[key][:, None]
|
|
c = self.embedding(c)
|
|
return c
|
|
|
|
|
|
class TransformerEmbedder(AbstractEncoder):
|
|
"""Some transformer encoder layers"""
|
|
|
|
def __init__(self, n_embed, n_layer, vocab_size, max_seq_len=77, device="cuda"):
|
|
super().__init__()
|
|
self.device = device
|
|
self.transformer = TransformerWrapper(
|
|
num_tokens=vocab_size,
|
|
max_seq_len=max_seq_len,
|
|
attn_layers=Encoder(dim=n_embed, depth=n_layer),
|
|
)
|
|
|
|
def forward(self, tokens):
|
|
tokens = tokens.to(self.device) # meh
|
|
z = self.transformer(tokens, return_embeddings=True)
|
|
return z
|
|
|
|
def encode(self, x):
|
|
return self(x)
|
|
|
|
|
|
class BERTTokenizer(AbstractEncoder):
|
|
"""Uses a pretrained BERT tokenizer by huggingface. Vocab size: 30522 (?)"""
|
|
|
|
def __init__(self, device="cuda", vq_interface=True, max_length=77):
|
|
super().__init__()
|
|
from transformers import BertTokenizerFast # TODO: add to reuquirements
|
|
|
|
self.tokenizer = BertTokenizerFast.from_pretrained("bert-base-uncased")
|
|
self.device = device
|
|
self.vq_interface = vq_interface
|
|
self.max_length = max_length
|
|
|
|
def forward(self, text):
|
|
batch_encoding = self.tokenizer(
|
|
text,
|
|
truncation=True,
|
|
max_length=self.max_length,
|
|
return_length=True,
|
|
return_overflowing_tokens=False,
|
|
padding="max_length",
|
|
return_tensors="pt",
|
|
)
|
|
tokens = batch_encoding["input_ids"].to(self.device)
|
|
return tokens
|
|
|
|
@torch.no_grad()
|
|
def encode(self, text):
|
|
tokens = self(text)
|
|
if not self.vq_interface:
|
|
return tokens
|
|
return None, None, [None, None, tokens]
|
|
|
|
def decode(self, text):
|
|
return text
|
|
|
|
|
|
class BERTEmbedder(AbstractEncoder):
|
|
"""Uses the BERT tokenizr model and add some transformer encoder layers"""
|
|
|
|
def __init__(
|
|
self,
|
|
n_embed,
|
|
n_layer,
|
|
vocab_size=30522,
|
|
max_seq_len=77,
|
|
device="cuda",
|
|
use_tokenizer=True,
|
|
embedding_dropout=0.0,
|
|
):
|
|
super().__init__()
|
|
self.use_tknz_fn = use_tokenizer
|
|
if self.use_tknz_fn:
|
|
self.tknz_fn = BERTTokenizer(vq_interface=False, max_length=max_seq_len)
|
|
self.device = device
|
|
self.transformer = TransformerWrapper(
|
|
num_tokens=vocab_size,
|
|
max_seq_len=max_seq_len,
|
|
attn_layers=Encoder(dim=n_embed, depth=n_layer),
|
|
emb_dropout=embedding_dropout,
|
|
)
|
|
|
|
def forward(self, text):
|
|
if self.use_tknz_fn:
|
|
tokens = self.tknz_fn(text) # .to(self.device)
|
|
else:
|
|
tokens = text
|
|
z = self.transformer(tokens, return_embeddings=True)
|
|
return z
|
|
|
|
def encode(self, text):
|
|
# output of length 77
|
|
return self(text)
|
|
|
|
|
|
from transformers import CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5Tokenizer
|
|
|
|
|
|
def disabled_train(self, mode=True):
|
|
"""Overwrite model.train with this function to make sure train/eval mode
|
|
does not change anymore."""
|
|
return self
|
|
|
|
|
|
class FrozenT5Embedder(AbstractEncoder):
|
|
"""Uses the T5 transformer encoder for text"""
|
|
|
|
def __init__(
|
|
self, version="google/t5-v1_1-large", device="cuda", max_length=77
|
|
): # others are google/t5-v1_1-xl and google/t5-v1_1-xxl
|
|
super().__init__()
|
|
self.tokenizer = T5Tokenizer.from_pretrained(version)
|
|
self.transformer = T5EncoderModel.from_pretrained(version)
|
|
self.device = device
|
|
self.max_length = max_length # TODO: typical value?
|
|
self.freeze()
|
|
|
|
def freeze(self):
|
|
self.transformer = self.transformer.eval()
|
|
# self.train = disabled_train
|
|
for param in self.parameters():
|
|
param.requires_grad = False
|
|
|
|
def forward(self, text):
|
|
batch_encoding = self.tokenizer(
|
|
text,
|
|
truncation=True,
|
|
max_length=self.max_length,
|
|
return_length=True,
|
|
return_overflowing_tokens=False,
|
|
padding="max_length",
|
|
return_tensors="pt",
|
|
)
|
|
tokens = batch_encoding["input_ids"].to(self.device)
|
|
outputs = self.transformer(input_ids=tokens)
|
|
|
|
z = outputs.last_hidden_state
|
|
return z
|
|
|
|
def encode(self, text):
|
|
return self(text)
|
|
|
|
|
|
import kornia.augmentation as K
|
|
|
|
from extern.ldm_zero123.thirdp.psp.id_loss import IDFeatures
|
|
|
|
|
|
class FrozenFaceEncoder(AbstractEncoder):
|
|
def __init__(self, model_path, augment=False):
|
|
super().__init__()
|
|
self.loss_fn = IDFeatures(model_path)
|
|
# face encoder is frozen
|
|
for p in self.loss_fn.parameters():
|
|
p.requires_grad = False
|
|
# Mapper is trainable
|
|
self.mapper = torch.nn.Linear(512, 768)
|
|
p = 0.25
|
|
if augment:
|
|
self.augment = K.AugmentationSequential(
|
|
K.RandomHorizontalFlip(p=0.5),
|
|
K.RandomEqualize(p=p),
|
|
# K.RandomPlanckianJitter(p=p),
|
|
# K.RandomPlasmaBrightness(p=p),
|
|
# K.RandomPlasmaContrast(p=p),
|
|
# K.ColorJiggle(0.02, 0.2, 0.2, p=p),
|
|
)
|
|
else:
|
|
self.augment = False
|
|
|
|
def forward(self, img):
|
|
if isinstance(img, list):
|
|
# Uncondition
|
|
return torch.zeros((1, 1, 768), device=self.mapper.weight.device)
|
|
|
|
if self.augment is not None:
|
|
# Transforms require 0-1
|
|
img = self.augment((img + 1) / 2)
|
|
img = 2 * img - 1
|
|
|
|
feat = self.loss_fn(img, crop=True)
|
|
feat = self.mapper(feat.unsqueeze(1))
|
|
return feat
|
|
|
|
def encode(self, img):
|
|
return self(img)
|
|
|
|
|
|
class FrozenCLIPEmbedder(AbstractEncoder):
|
|
"""Uses the CLIP transformer encoder for text (from huggingface)"""
|
|
|
|
def __init__(
|
|
self, version="openai/clip-vit-large-patch14", device="cuda", max_length=77
|
|
): # clip-vit-base-patch32
|
|
super().__init__()
|
|
self.tokenizer = CLIPTokenizer.from_pretrained(version)
|
|
self.transformer = CLIPTextModel.from_pretrained(version)
|
|
self.device = device
|
|
self.max_length = max_length # TODO: typical value?
|
|
self.freeze()
|
|
|
|
def freeze(self):
|
|
self.transformer = self.transformer.eval()
|
|
# self.train = disabled_train
|
|
for param in self.parameters():
|
|
param.requires_grad = False
|
|
|
|
def forward(self, text):
|
|
batch_encoding = self.tokenizer(
|
|
text,
|
|
truncation=True,
|
|
max_length=self.max_length,
|
|
return_length=True,
|
|
return_overflowing_tokens=False,
|
|
padding="max_length",
|
|
return_tensors="pt",
|
|
)
|
|
tokens = batch_encoding["input_ids"].to(self.device)
|
|
outputs = self.transformer(input_ids=tokens)
|
|
|
|
z = outputs.last_hidden_state
|
|
return z
|
|
|
|
def encode(self, text):
|
|
return self(text)
|
|
|
|
|
|
import torch.nn.functional as F
|
|
from transformers import CLIPVisionModel
|
|
|
|
|
|
class ClipImageProjector(AbstractEncoder):
|
|
"""
|
|
Uses the CLIP image encoder.
|
|
"""
|
|
|
|
def __init__(
|
|
self, version="openai/clip-vit-large-patch14", max_length=77
|
|
): # clip-vit-base-patch32
|
|
super().__init__()
|
|
self.model = CLIPVisionModel.from_pretrained(version)
|
|
self.model.train()
|
|
self.max_length = max_length # TODO: typical value?
|
|
self.antialias = True
|
|
self.mapper = torch.nn.Linear(1024, 768)
|
|
self.register_buffer(
|
|
"mean", torch.Tensor([0.48145466, 0.4578275, 0.40821073]), persistent=False
|
|
)
|
|
self.register_buffer(
|
|
"std", torch.Tensor([0.26862954, 0.26130258, 0.27577711]), persistent=False
|
|
)
|
|
null_cond = self.get_null_cond(version, max_length)
|
|
self.register_buffer("null_cond", null_cond)
|
|
|
|
@torch.no_grad()
|
|
def get_null_cond(self, version, max_length):
|
|
device = self.mean.device
|
|
embedder = FrozenCLIPEmbedder(
|
|
version=version, device=device, max_length=max_length
|
|
)
|
|
null_cond = embedder([""])
|
|
return null_cond
|
|
|
|
def preprocess(self, x):
|
|
# Expects inputs in the range -1, 1
|
|
x = kornia.geometry.resize(
|
|
x,
|
|
(224, 224),
|
|
interpolation="bicubic",
|
|
align_corners=True,
|
|
antialias=self.antialias,
|
|
)
|
|
x = (x + 1.0) / 2.0
|
|
# renormalize according to clip
|
|
x = kornia.enhance.normalize(x, self.mean, self.std)
|
|
return x
|
|
|
|
def forward(self, x):
|
|
if isinstance(x, list):
|
|
return self.null_cond
|
|
# x is assumed to be in range [-1,1]
|
|
x = self.preprocess(x)
|
|
outputs = self.model(pixel_values=x)
|
|
last_hidden_state = outputs.last_hidden_state
|
|
last_hidden_state = self.mapper(last_hidden_state)
|
|
return F.pad(
|
|
last_hidden_state,
|
|
[0, 0, 0, self.max_length - last_hidden_state.shape[1], 0, 0],
|
|
)
|
|
|
|
def encode(self, im):
|
|
return self(im)
|
|
|
|
|
|
class ProjectedFrozenCLIPEmbedder(AbstractEncoder):
|
|
def __init__(
|
|
self, version="openai/clip-vit-large-patch14", device="cuda", max_length=77
|
|
): # clip-vit-base-patch32
|
|
super().__init__()
|
|
self.embedder = FrozenCLIPEmbedder(
|
|
version=version, device=device, max_length=max_length
|
|
)
|
|
self.projection = torch.nn.Linear(768, 768)
|
|
|
|
def forward(self, text):
|
|
z = self.embedder(text)
|
|
return self.projection(z)
|
|
|
|
def encode(self, text):
|
|
return self(text)
|
|
|
|
|
|
class FrozenCLIPImageEmbedder(AbstractEncoder):
|
|
"""
|
|
Uses the CLIP image encoder.
|
|
Not actually frozen... If you want that set cond_stage_trainable=False in cfg
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
model="ViT-L/14",
|
|
jit=False,
|
|
device="cpu",
|
|
antialias=False,
|
|
):
|
|
super().__init__()
|
|
self.model, _ = clip.load(name=model, device=device, jit=jit, download_root=None)
|
|
# We don't use the text part so delete it
|
|
del self.model.transformer
|
|
self.antialias = antialias
|
|
self.register_buffer(
|
|
"mean", torch.Tensor([0.48145466, 0.4578275, 0.40821073]), persistent=False
|
|
)
|
|
self.register_buffer(
|
|
"std", torch.Tensor([0.26862954, 0.26130258, 0.27577711]), persistent=False
|
|
)
|
|
|
|
def preprocess(self, x):
|
|
# Expects inputs in the range -1, 1
|
|
x = kornia.geometry.resize(
|
|
x,
|
|
(224, 224),
|
|
interpolation="bicubic",
|
|
align_corners=True,
|
|
antialias=self.antialias,
|
|
)
|
|
x = (x + 1.0) / 2.0
|
|
# renormalize according to clip
|
|
x = kornia.enhance.normalize(x, self.mean, self.std)
|
|
return x
|
|
|
|
def forward(self, x):
|
|
# x is assumed to be in range [-1,1]
|
|
if isinstance(x, list):
|
|
# [""] denotes condition dropout for ucg
|
|
device = self.model.visual.conv1.weight.device
|
|
return torch.zeros(1, 768, device=device)
|
|
return self.model.encode_image(self.preprocess(x)).float()
|
|
|
|
def encode(self, im):
|
|
return self(im).unsqueeze(1)
|
|
|
|
|
|
import random
|
|
|
|
from torchvision import transforms
|
|
|
|
|
|
class FrozenCLIPImageMutliEmbedder(AbstractEncoder):
|
|
"""
|
|
Uses the CLIP image encoder.
|
|
Not actually frozen... If you want that set cond_stage_trainable=False in cfg
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
model="ViT-L/14",
|
|
jit=False,
|
|
device="cpu",
|
|
antialias=True,
|
|
max_crops=5,
|
|
):
|
|
super().__init__()
|
|
self.model, _ = clip.load(name=model, device=device, jit=jit)
|
|
# We don't use the text part so delete it
|
|
del self.model.transformer
|
|
self.antialias = antialias
|
|
self.register_buffer(
|
|
"mean", torch.Tensor([0.48145466, 0.4578275, 0.40821073]), persistent=False
|
|
)
|
|
self.register_buffer(
|
|
"std", torch.Tensor([0.26862954, 0.26130258, 0.27577711]), persistent=False
|
|
)
|
|
self.max_crops = max_crops
|
|
|
|
def preprocess(self, x):
|
|
# Expects inputs in the range -1, 1
|
|
randcrop = transforms.RandomResizedCrop(224, scale=(0.085, 1.0), ratio=(1, 1))
|
|
max_crops = self.max_crops
|
|
patches = []
|
|
crops = [randcrop(x) for _ in range(max_crops)]
|
|
patches.extend(crops)
|
|
x = torch.cat(patches, dim=0)
|
|
x = (x + 1.0) / 2.0
|
|
# renormalize according to clip
|
|
x = kornia.enhance.normalize(x, self.mean, self.std)
|
|
return x
|
|
|
|
def forward(self, x):
|
|
# x is assumed to be in range [-1,1]
|
|
if isinstance(x, list):
|
|
# [""] denotes condition dropout for ucg
|
|
device = self.model.visual.conv1.weight.device
|
|
return torch.zeros(1, self.max_crops, 768, device=device)
|
|
batch_tokens = []
|
|
for im in x:
|
|
patches = self.preprocess(im.unsqueeze(0))
|
|
tokens = self.model.encode_image(patches).float()
|
|
for t in tokens:
|
|
if random.random() < 0.1:
|
|
t *= 0
|
|
batch_tokens.append(tokens.unsqueeze(0))
|
|
|
|
return torch.cat(batch_tokens, dim=0)
|
|
|
|
def encode(self, im):
|
|
return self(im)
|
|
|
|
|
|
class SpatialRescaler(nn.Module):
|
|
def __init__(
|
|
self,
|
|
n_stages=1,
|
|
method="bilinear",
|
|
multiplier=0.5,
|
|
in_channels=3,
|
|
out_channels=None,
|
|
bias=False,
|
|
):
|
|
super().__init__()
|
|
self.n_stages = n_stages
|
|
assert self.n_stages >= 0
|
|
assert method in [
|
|
"nearest",
|
|
"linear",
|
|
"bilinear",
|
|
"trilinear",
|
|
"bicubic",
|
|
"area",
|
|
]
|
|
self.multiplier = multiplier
|
|
self.interpolator = partial(torch.nn.functional.interpolate, mode=method)
|
|
self.remap_output = out_channels is not None
|
|
if self.remap_output:
|
|
print(
|
|
f"Spatial Rescaler mapping from {in_channels} to {out_channels} channels after resizing."
|
|
)
|
|
self.channel_mapper = nn.Conv2d(in_channels, out_channels, 1, bias=bias)
|
|
|
|
def forward(self, x):
|
|
for stage in range(self.n_stages):
|
|
x = self.interpolator(x, scale_factor=self.multiplier)
|
|
|
|
if self.remap_output:
|
|
x = self.channel_mapper(x)
|
|
return x
|
|
|
|
def encode(self, x):
|
|
return self(x)
|
|
|
|
|
|
from extern.ldm_zero123.modules.diffusionmodules.util import (
|
|
extract_into_tensor,
|
|
make_beta_schedule,
|
|
noise_like,
|
|
)
|
|
from extern.ldm_zero123.util import instantiate_from_config
|
|
|
|
|
|
class LowScaleEncoder(nn.Module):
|
|
def __init__(
|
|
self,
|
|
model_config,
|
|
linear_start,
|
|
linear_end,
|
|
timesteps=1000,
|
|
max_noise_level=250,
|
|
output_size=64,
|
|
scale_factor=1.0,
|
|
):
|
|
super().__init__()
|
|
self.max_noise_level = max_noise_level
|
|
self.model = instantiate_from_config(model_config)
|
|
self.augmentation_schedule = self.register_schedule(
|
|
timesteps=timesteps, linear_start=linear_start, linear_end=linear_end
|
|
)
|
|
self.out_size = output_size
|
|
self.scale_factor = scale_factor
|
|
|
|
def register_schedule(
|
|
self,
|
|
beta_schedule="linear",
|
|
timesteps=1000,
|
|
linear_start=1e-4,
|
|
linear_end=2e-2,
|
|
cosine_s=8e-3,
|
|
):
|
|
betas = make_beta_schedule(
|
|
beta_schedule,
|
|
timesteps,
|
|
linear_start=linear_start,
|
|
linear_end=linear_end,
|
|
cosine_s=cosine_s,
|
|
)
|
|
alphas = 1.0 - betas
|
|
alphas_cumprod = np.cumprod(alphas, axis=0)
|
|
alphas_cumprod_prev = np.append(1.0, alphas_cumprod[:-1])
|
|
|
|
(timesteps,) = betas.shape
|
|
self.num_timesteps = int(timesteps)
|
|
self.linear_start = linear_start
|
|
self.linear_end = linear_end
|
|
assert (
|
|
alphas_cumprod.shape[0] == self.num_timesteps
|
|
), "alphas have to be defined for each timestep"
|
|
|
|
to_torch = partial(torch.tensor, dtype=torch.float32)
|
|
|
|
self.register_buffer("betas", to_torch(betas))
|
|
self.register_buffer("alphas_cumprod", to_torch(alphas_cumprod))
|
|
self.register_buffer("alphas_cumprod_prev", to_torch(alphas_cumprod_prev))
|
|
|
|
# calculations for diffusion q(x_t | x_{t-1}) and others
|
|
self.register_buffer("sqrt_alphas_cumprod", to_torch(np.sqrt(alphas_cumprod)))
|
|
self.register_buffer(
|
|
"sqrt_one_minus_alphas_cumprod", to_torch(np.sqrt(1.0 - alphas_cumprod))
|
|
)
|
|
self.register_buffer(
|
|
"log_one_minus_alphas_cumprod", to_torch(np.log(1.0 - alphas_cumprod))
|
|
)
|
|
self.register_buffer(
|
|
"sqrt_recip_alphas_cumprod", to_torch(np.sqrt(1.0 / alphas_cumprod))
|
|
)
|
|
self.register_buffer(
|
|
"sqrt_recipm1_alphas_cumprod", to_torch(np.sqrt(1.0 / alphas_cumprod - 1))
|
|
)
|
|
|
|
def q_sample(self, x_start, t, noise=None):
|
|
noise = default(noise, lambda: torch.randn_like(x_start))
|
|
return (
|
|
extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start
|
|
+ extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape)
|
|
* noise
|
|
)
|
|
|
|
def forward(self, x):
|
|
z = self.model.encode(x).sample()
|
|
z = z * self.scale_factor
|
|
noise_level = torch.randint(
|
|
0, self.max_noise_level, (x.shape[0],), device=x.device
|
|
).long()
|
|
z = self.q_sample(z, noise_level)
|
|
if self.out_size is not None:
|
|
z = torch.nn.functional.interpolate(
|
|
z, size=self.out_size, mode="nearest"
|
|
) # TODO: experiment with mode
|
|
# z = z.repeat_interleave(2, -2).repeat_interleave(2, -1)
|
|
return z, noise_level
|
|
|
|
def decode(self, z):
|
|
z = z / self.scale_factor
|
|
return self.model.decode(z)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
from extern.ldm_zero123.util import count_params
|
|
|
|
sentences = [
|
|
"a hedgehog drinking a whiskey",
|
|
"der mond ist aufgegangen",
|
|
"Ein Satz mit vielen Sonderzeichen: äöü ß ?! : 'xx-y/@s'",
|
|
]
|
|
model = FrozenT5Embedder(version="google/t5-v1_1-xl").cuda()
|
|
count_params(model, True)
|
|
z = model(sentences)
|
|
print(z.shape)
|
|
|
|
model = FrozenCLIPEmbedder().cuda()
|
|
count_params(model, True)
|
|
z = model(sentences)
|
|
print(z.shape)
|
|
|
|
print("done.")
|