DreamCraft3D/threestudio/models/renderers/nvdiff_rasterizer.py
2023-12-15 17:44:44 +08:00

188 lines
7.6 KiB
Python

from dataclasses import dataclass
import nerfacc
import torch
import torch.nn.functional as F
import threestudio
from threestudio.models.background.base import BaseBackground
from threestudio.models.geometry.base import BaseImplicitGeometry
from threestudio.models.materials.base import BaseMaterial
from threestudio.models.renderers.base import Rasterizer, VolumeRenderer
from threestudio.utils.misc import get_device
from threestudio.utils.rasterize import NVDiffRasterizerContext
from threestudio.utils.typing import *
@threestudio.register("nvdiff-rasterizer")
class NVDiffRasterizer(Rasterizer):
@dataclass
class Config(VolumeRenderer.Config):
context_type: str = "gl"
cfg: Config
def configure(
self,
geometry: BaseImplicitGeometry,
material: BaseMaterial,
background: BaseBackground,
) -> None:
super().configure(geometry, material, background)
self.ctx = NVDiffRasterizerContext(self.cfg.context_type, get_device())
def forward(
self,
mvp_mtx: Float[Tensor, "B 4 4"],
camera_positions: Float[Tensor, "B 3"],
light_positions: Float[Tensor, "B 3"],
height: int,
width: int,
render_rgb: bool = True,
render_mask: bool = False,
**kwargs
) -> Dict[str, Any]:
batch_size = mvp_mtx.shape[0]
mesh = self.geometry.isosurface()
v_pos_clip: Float[Tensor, "B Nv 4"] = self.ctx.vertex_transform(
mesh.v_pos, mvp_mtx
)
rast, _ = self.ctx.rasterize(v_pos_clip, mesh.t_pos_idx, (height, width))
mask = rast[..., 3:] > 0
mask_aa = self.ctx.antialias(mask.float(), rast, v_pos_clip, mesh.t_pos_idx)
out = {"opacity": mask_aa, "mesh": mesh}
if render_mask:
# get front-view visibility mask
with torch.no_grad():
mvp_mtx_ref = kwargs["mvp_mtx_ref"] # FIXME
v_pos_clip_front: Float[Tensor, "B Nv 4"] = self.ctx.vertex_transform(
mesh.v_pos, mvp_mtx_ref
)
rast_front, _ = self.ctx.rasterize(v_pos_clip_front, mesh.t_pos_idx, (height, width))
mask_front = rast_front[..., 3:]
mask_front = mask_front[mask_front > 0] - 1.
faces_vis = mesh.t_pos_idx[mask_front.long()]
mesh._v_rgb = torch.zeros(mesh.v_pos.shape[0], 1).to(mesh.v_pos)
mesh._v_rgb[faces_vis[:,0]] = 1.
mesh._v_rgb[faces_vis[:,1]] = 1.
mesh._v_rgb[faces_vis[:,2]] = 1.
mask_vis, _ = self.ctx.interpolate_one(mesh._v_rgb, rast, mesh.t_pos_idx)
mask_vis = mask_vis > 0.
# from torchvision.utils import save_image
# save_image(mask_vis.permute(0,3,1,2).float(), "debug.png")
out.update({"mask": 1.0 - mask_vis.float()})
# FIXME: paste texture back to mesh
# import cv2
# import imageio
# import numpy as np
# gt_rgb = imageio.imread("load/images/tiger_nurse_rgba.png")/255.
# gt_rgb = cv2.resize(gt_rgb[:,:,:3],(512, 512))
# gt_rgb = torch.Tensor(gt_rgb[None,...]).permute(0,3,1,2).to(v_pos_clip_front)
# # align to up-z and front-x
# dir2vec = {
# "+x": np.array([1, 0, 0]),
# "+y": np.array([0, 1, 0]),
# "+z": np.array([0, 0, 1]),
# "-x": np.array([-1, 0, 0]),
# "-y": np.array([0, -1, 0]),
# "-z": np.array([0, 0, -1]),
# }
# z_, x_ = (
# dir2vec["-y"],
# dir2vec["-z"],
# )
# y_ = np.cross(z_, x_)
# std2mesh = np.stack([x_, y_, z_], axis=0).T
# v_pos_ = (torch.mm(torch.tensor(std2mesh).to(mesh.v_pos), mesh.v_pos.T).T) * 2
# print(v_pos_.min(), v_pos_.max())
# mesh._v_rgb=F.grid_sample(gt_rgb, v_pos_[None, None][..., :2], mode="nearest").permute(3,1,0,2).squeeze(-1).squeeze(-1).contiguous()
# rgb_vis, _ = self.ctx.interpolate_one(mesh._v_rgb, rast, mesh.t_pos_idx)
# rgb_vis_aa = self.ctx.antialias(
# rgb_vis, rast, v_pos_clip, mesh.t_pos_idx
# )
# from torchvision.utils import save_image
# save_image(rgb_vis_aa.permute(0,3,1,2), "debug.png")
gb_normal, _ = self.ctx.interpolate_one(mesh.v_nrm, rast, mesh.t_pos_idx)
gb_normal = F.normalize(gb_normal, dim=-1)
gb_normal_aa = torch.lerp(
torch.zeros_like(gb_normal), (gb_normal + 1.0) / 2.0, mask.float()
)
gb_normal_aa = self.ctx.antialias(
gb_normal_aa, rast, v_pos_clip, mesh.t_pos_idx
)
out.update({"comp_normal": gb_normal_aa}) # in [0, 1]
# Compute normal in view space.
# TODO: make is clear whether to compute this.
w2c = kwargs["c2w"][:, :3, :3].inverse()
gb_normal_viewspace = torch.einsum("bij,bhwj->bhwi", w2c, gb_normal)
gb_normal_viewspace = F.normalize(gb_normal_viewspace, dim=-1)
bg_normal = torch.zeros_like(gb_normal_viewspace)
bg_normal[..., 2] = 1
gb_normal_viewspace_aa = torch.lerp(
(bg_normal + 1.0) / 2.0,
(gb_normal_viewspace + 1.0) / 2.0,
mask.float(),
).contiguous()
gb_normal_viewspace_aa = self.ctx.antialias(
gb_normal_viewspace_aa, rast, v_pos_clip, mesh.t_pos_idx
)
out.update({"comp_normal_viewspace": gb_normal_viewspace_aa})
# TODO: make it clear whether to compute the normal, now we compute it in all cases
# consider using: require_normal_computation = render_normal or (render_rgb and material.requires_normal)
# or
# render_normal = render_normal or (render_rgb and material.requires_normal)
if render_rgb:
selector = mask[..., 0]
gb_pos, _ = self.ctx.interpolate_one(mesh.v_pos, rast, mesh.t_pos_idx)
gb_viewdirs = F.normalize(
gb_pos - camera_positions[:, None, None, :], dim=-1
)
gb_light_positions = light_positions[:, None, None, :].expand(
-1, height, width, -1
)
positions = gb_pos[selector]
geo_out = self.geometry(positions, output_normal=False)
extra_geo_info = {}
if self.material.requires_normal:
extra_geo_info["shading_normal"] = gb_normal[selector]
if self.material.requires_tangent:
gb_tangent, _ = self.ctx.interpolate_one(
mesh.v_tng, rast, mesh.t_pos_idx
)
gb_tangent = F.normalize(gb_tangent, dim=-1)
extra_geo_info["tangent"] = gb_tangent[selector]
rgb_fg = self.material(
viewdirs=gb_viewdirs[selector],
positions=positions,
light_positions=gb_light_positions[selector],
**extra_geo_info,
**geo_out
)
gb_rgb_fg = torch.zeros(batch_size, height, width, 3).to(rgb_fg)
gb_rgb_fg[selector] = rgb_fg
gb_rgb_bg = self.background(dirs=gb_viewdirs)
gb_rgb = torch.lerp(gb_rgb_bg, gb_rgb_fg, mask.float())
gb_rgb_aa = self.ctx.antialias(gb_rgb, rast, v_pos_clip, mesh.t_pos_idx)
out.update({"comp_rgb": gb_rgb_aa, "comp_rgb_bg": gb_rgb_bg})
return out