import math from inspect import isfunction import torch import torch.nn.functional as F from einops import rearrange, repeat from torch import einsum, nn from extern.ldm_zero123.modules.diffusionmodules.util import checkpoint def exists(val): return val is not None def uniq(arr): return {el: True for el in arr}.keys() def default(val, d): if exists(val): return val return d() if isfunction(d) else d def max_neg_value(t): return -torch.finfo(t.dtype).max def init_(tensor): dim = tensor.shape[-1] std = 1 / math.sqrt(dim) tensor.uniform_(-std, std) return tensor # feedforward class GEGLU(nn.Module): def __init__(self, dim_in, dim_out): super().__init__() self.proj = nn.Linear(dim_in, dim_out * 2) def forward(self, x): x, gate = self.proj(x).chunk(2, dim=-1) return x * F.gelu(gate) class FeedForward(nn.Module): def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.0): super().__init__() inner_dim = int(dim * mult) dim_out = default(dim_out, dim) project_in = ( nn.Sequential(nn.Linear(dim, inner_dim), nn.GELU()) if not glu else GEGLU(dim, inner_dim) ) self.net = nn.Sequential( project_in, nn.Dropout(dropout), nn.Linear(inner_dim, dim_out) ) def forward(self, x): return self.net(x) def zero_module(module): """ Zero out the parameters of a module and return it. """ for p in module.parameters(): p.detach().zero_() return module def Normalize(in_channels): return torch.nn.GroupNorm( num_groups=32, num_channels=in_channels, eps=1e-6, affine=True ) class LinearAttention(nn.Module): def __init__(self, dim, heads=4, dim_head=32): super().__init__() self.heads = heads hidden_dim = dim_head * heads self.to_qkv = nn.Conv2d(dim, hidden_dim * 3, 1, bias=False) self.to_out = nn.Conv2d(hidden_dim, dim, 1) def forward(self, x): b, c, h, w = x.shape qkv = self.to_qkv(x) q, k, v = rearrange( qkv, "b (qkv heads c) h w -> qkv b heads c (h w)", heads=self.heads, qkv=3 ) k = k.softmax(dim=-1) context = torch.einsum("bhdn,bhen->bhde", k, v) out = torch.einsum("bhde,bhdn->bhen", context, q) out = rearrange( out, "b heads c (h w) -> b (heads c) h w", heads=self.heads, h=h, w=w ) return self.to_out(out) class SpatialSelfAttention(nn.Module): def __init__(self, in_channels): super().__init__() self.in_channels = in_channels self.norm = Normalize(in_channels) self.q = torch.nn.Conv2d( in_channels, in_channels, kernel_size=1, stride=1, padding=0 ) self.k = torch.nn.Conv2d( in_channels, in_channels, kernel_size=1, stride=1, padding=0 ) self.v = torch.nn.Conv2d( in_channels, in_channels, kernel_size=1, stride=1, padding=0 ) self.proj_out = torch.nn.Conv2d( in_channels, in_channels, kernel_size=1, stride=1, padding=0 ) def forward(self, x): h_ = x h_ = self.norm(h_) q = self.q(h_) k = self.k(h_) v = self.v(h_) # compute attention b, c, h, w = q.shape q = rearrange(q, "b c h w -> b (h w) c") k = rearrange(k, "b c h w -> b c (h w)") w_ = torch.einsum("bij,bjk->bik", q, k) w_ = w_ * (int(c) ** (-0.5)) w_ = torch.nn.functional.softmax(w_, dim=2) # attend to values v = rearrange(v, "b c h w -> b c (h w)") w_ = rearrange(w_, "b i j -> b j i") h_ = torch.einsum("bij,bjk->bik", v, w_) h_ = rearrange(h_, "b c (h w) -> b c h w", h=h) h_ = self.proj_out(h_) return x + h_ class LoRALinearLayer(nn.Module): def __init__(self, in_features, out_features, rank=4, network_alpha=None): super().__init__() if rank > min(in_features, out_features): raise ValueError(f"LoRA rank {rank} must be less or equal than {min(in_features, out_features)}") self.down = nn.Linear(in_features, rank, bias=False) self.up = nn.Linear(rank, out_features, bias=False) # This value has the same meaning as the `--network_alpha` option in the kohya-ss trainer script. # See https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_network_README-en.md#execute-learning self.network_alpha = network_alpha self.rank = rank nn.init.normal_(self.down.weight, std=1 / rank) nn.init.zeros_(self.up.weight) def forward(self, hidden_states): orig_dtype = hidden_states.dtype dtype = self.down.weight.dtype down_hidden_states = self.down(hidden_states.to(dtype)) up_hidden_states = self.up(down_hidden_states) if self.network_alpha is not None: up_hidden_states *= self.network_alpha / self.rank return up_hidden_states.to(orig_dtype) class CrossAttention(nn.Module): def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.0): super().__init__() inner_dim = dim_head * heads context_dim = default(context_dim, query_dim) self.scale = dim_head**-0.5 self.heads = heads self.to_q = nn.Linear(query_dim, inner_dim, bias=False) self.to_k = nn.Linear(context_dim, inner_dim, bias=False) self.to_v = nn.Linear(context_dim, inner_dim, bias=False) self.to_out = nn.Sequential( nn.Linear(inner_dim, query_dim), nn.Dropout(dropout) ) self.lora = False self.query_dim = query_dim self.inner_dim = inner_dim self.context_dim = context_dim def setup_lora(self, rank=4, network_alpha=None): self.lora = True self.rank = rank self.to_q_lora = LoRALinearLayer(self.query_dim, self.inner_dim, rank, network_alpha) self.to_k_lora = LoRALinearLayer(self.context_dim, self.inner_dim, rank, network_alpha) self.to_v_lora = LoRALinearLayer(self.context_dim, self.inner_dim, rank, network_alpha) self.to_out_lora = LoRALinearLayer(self.inner_dim, self.query_dim, rank, network_alpha) self.lora_layers = nn.ModuleList() self.lora_layers.append(self.to_q_lora) self.lora_layers.append(self.to_k_lora) self.lora_layers.append(self.to_v_lora) self.lora_layers.append(self.to_out_lora) def forward(self, x, context=None, mask=None): h = self.heads q = self.to_q(x) context = default(context, x) k = self.to_k(context) v = self.to_v(context) if self.lora: q += self.to_q_lora(x) k += self.to_k_lora(context) v += self.to_v_lora(context) q, k, v = map(lambda t: rearrange(t, "b n (h d) -> (b h) n d", h=h), (q, k, v)) sim = einsum("b i d, b j d -> b i j", q, k) * self.scale if exists(mask): mask = rearrange(mask, "b ... -> b (...)") max_neg_value = -torch.finfo(sim.dtype).max mask = repeat(mask, "b j -> (b h) () j", h=h) sim.masked_fill_(~mask, max_neg_value) # attention, what we cannot get enough of attn = sim.softmax(dim=-1) out = einsum("b i j, b j d -> b i d", attn, v) out = rearrange(out, "(b h) n d -> b n (h d)", h=h) # return self.to_out(out) # linear proj o = self.to_out[0](out) if self.lora: o += self.to_out_lora(out) # dropout out = self.to_out[1](o) return out class BasicTransformerBlock(nn.Module): def __init__( self, dim, n_heads, d_head, dropout=0.0, context_dim=None, gated_ff=True, checkpoint=True, disable_self_attn=False, ): super().__init__() self.disable_self_attn = disable_self_attn self.attn1 = CrossAttention( query_dim=dim, heads=n_heads, dim_head=d_head, dropout=dropout, context_dim=context_dim if self.disable_self_attn else None, ) # is a self-attention if not self.disable_self_attn self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff) self.attn2 = CrossAttention( query_dim=dim, context_dim=context_dim, heads=n_heads, dim_head=d_head, dropout=dropout, ) # is self-attn if context is none self.norm1 = nn.LayerNorm(dim) self.norm2 = nn.LayerNorm(dim) self.norm3 = nn.LayerNorm(dim) self.checkpoint = checkpoint def forward(self, x, context=None): # return checkpoint( # self._forward, (x, context), self.parameters(), self.checkpoint # ) return self._forward(x, context) def _forward(self, x, context=None): x = ( self.attn1( self.norm1(x), context=context if self.disable_self_attn else None ) + x ) x = self.attn2(self.norm2(x), context=context) + x x = self.ff(self.norm3(x)) + x return x class SpatialTransformer(nn.Module): """ Transformer block for image-like data. First, project the input (aka embedding) and reshape to b, t, d. Then apply standard transformer action. Finally, reshape to image """ def __init__( self, in_channels, n_heads, d_head, depth=1, dropout=0.0, context_dim=None, disable_self_attn=False, ): super().__init__() self.in_channels = in_channels inner_dim = n_heads * d_head self.norm = Normalize(in_channels) self.proj_in = nn.Conv2d( in_channels, inner_dim, kernel_size=1, stride=1, padding=0 ) self.transformer_blocks = nn.ModuleList( [ BasicTransformerBlock( inner_dim, n_heads, d_head, dropout=dropout, context_dim=context_dim, disable_self_attn=disable_self_attn, ) for d in range(depth) ] ) self.proj_out = zero_module( nn.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0) ) def forward(self, x, context=None): # note: if no context is given, cross-attention defaults to self-attention b, c, h, w = x.shape x_in = x x = self.norm(x) x = self.proj_in(x) x = rearrange(x, "b c h w -> b (h w) c").contiguous() for block in self.transformer_blocks: x = block(x, context=context) x = rearrange(x, "b (h w) c -> b c h w", h=h, w=w).contiguous() x = self.proj_out(x) return x + x_in