import torch from diffusers import DiffusionPipeline, DPMSolverMultistepScheduler # model_base = "stabilityai/stable-diffusion-2-1-base" # pipe = DiffusionPipeline.from_pretrained(model_base, torch_dtype=torch.float16, cache_dir=CACHE_DIR, local_files_only=True) # pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config, cache_dir=CACHE_DIR, local_files_only=True) # lora_model_path = "load/checkpoints/sd_21_base_bear_dreambooth_lora" # pipe.unet.load_attn_procs(lora_model_path) # pipe.to("cuda") # image = pipe("A picture of a sks bear in the sky", num_inference_steps=50, guidance_scale=7.5).images[0] # image.save("bear_dreambooth_lora.png") pipe = DiffusionPipeline.from_pretrained("DeepFloyd/IF-I-XL-v1.0", local_files_only=True, safety_checker=None) pipe.load_lora_weights("if_dreambooth_mushroom") pipe.scheduler = pipe.scheduler.__class__.from_config(pipe.scheduler.config, variance_type="fixed_small") pipe.to("cuda:7") image = pipe("A photo of a sks mushroom, front view", num_inference_steps=50, guidance_scale=7.5).images[0] image.save("mushroom_dreambooth_lora.png")