from diffusers import StableDiffusionPipeline, DDIMScheduler import torch # model_id = "load/checkpoints/sd_21_base_mushroom_vd_prompt" # model_id = "load/checkpoints/sd_base_mushroom" model_id = ".cache/checkpoints/sd_21_base_rabbit" # scheduler = DDIMScheduler() pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16).to("cuda") guidance_scale = 7.5 prompt = "a sks rabbit, front view" image = pipe(prompt, num_inference_steps=50, guidance_scale=guidance_scale).images[0] image.save("debug.png") # import os # import cv2 # import glob # import torch # import argparse # import numpy as np # from tqdm import tqdm # import pytorch_lightning as pl # from torchvision.utils import save_image # import threestudio # from threestudio.utils.config import load_config # if __name__ == "__main__": # parser = argparse.ArgumentParser() # parser.add_argument("--config", required=True, help="path to config file") # parser.add_argument("--view_dependent_noise", action="store_true", help="use view depdendent noise strength") # args, extras = parser.parse_known_args() # cfg = load_config(args.config, cli_args=extras, n_gpus=1) # guidance = threestudio.find(cfg.system.guidance_type)(cfg.system.guidance) # prompt_processor = threestudio.find(cfg.system.prompt_processor_type)(cfg.system.prompt_processor) # prompt_utils = prompt_processor() # guidance.update_step(epoch=0, global_step=0) # elevation, azimuth = torch.zeros(1).cuda(), torch.zeros(1).cuda() # camera_distances = torch.tensor([3.0]).cuda() # c2w = torch.zeros(4,4).cuda() # a = guidance.sample(prompt_utils, elevation, azimuth, camera_distances) # sample_lora # from torchvision.utils import save_image # save_image(a.permute(0,3,1,2), "debug.png", normalize=True, value_range=(0,1)) # python threestudio/scripts/test_dreambooth.py --config configs/experimental/stablediffusion.yaml system.prompt_processor.prompt="a sks mushroom growing on a log" \ # system.guidance.pretrained_model_name_or_path_lora="load/checkpoints/sd_21_base_mushroom_camera_condition"