DreamCraft3D/threestudio/models/guidance/deep_floyd_guidance.py

582 lines
23 KiB
Python
Raw Normal View History

2023-12-12 11:17:53 -05:00
from dataclasses import dataclass, field
import torch
import torch.nn as nn
import torch.nn.functional as F
from diffusers import IFPipeline, DDPMScheduler
from diffusers.utils.import_utils import is_xformers_available
from tqdm import tqdm
import threestudio
from threestudio.models.prompt_processors.base import PromptProcessorOutput
from threestudio.utils.base import BaseObject
from threestudio.utils.misc import C, parse_version
from threestudio.utils.ops import perpendicular_component
from threestudio.utils.typing import *
@threestudio.register("deep-floyd-guidance")
class DeepFloydGuidance(BaseObject):
@dataclass
class Config(BaseObject.Config):
cache_dir: Optional[str] = None
local_files_only: Optional[bool] = False
pretrained_model_name_or_path: str = "DeepFloyd/IF-I-XL-v1.0"
# FIXME: xformers error
enable_memory_efficient_attention: bool = False
enable_sequential_cpu_offload: bool = False
enable_attention_slicing: bool = False
enable_channels_last_format: bool = True
guidance_scale: float = 20.0
grad_clip: Optional[
Any
] = None # field(default_factory=lambda: [0, 2.0, 8.0, 1000])
time_prior: Optional[Any] = None # [w1,w2,s1,s2]
half_precision_weights: bool = True
min_step_percent: float = 0.02
max_step_percent: float = 0.98
weighting_strategy: str = "sds"
view_dependent_prompting: bool = True
"""Maximum number of batch items to evaluate guidance for (for debugging) and to save on disk. -1 means save all items."""
max_items_eval: int = 4
lora_weights_path: Optional[str] = None
cfg: Config
def configure(self) -> None:
threestudio.info(f"Loading Deep Floyd ...")
self.weights_dtype = (
torch.float16 if self.cfg.half_precision_weights else torch.float32
)
# Create model
self.pipe = IFPipeline.from_pretrained(
self.cfg.pretrained_model_name_or_path,
text_encoder=None,
safety_checker=None,
watermarker=None,
feature_extractor=None,
requires_safety_checker=False,
variant="fp16" if self.cfg.half_precision_weights else None,
torch_dtype=self.weights_dtype,
cache_dir=self.cfg.cache_dir,
local_files_only=self.cfg.local_files_only
).to(self.device)
# Load lora weights
if self.cfg.lora_weights_path is not None:
self.pipe.load_lora_weights(self.cfg.lora_weights_path)
self.pipe.scheduler = self.pipe.scheduler.__class__.from_config(self.pipe.scheduler.config, variance_type="fixed_small")
if self.cfg.enable_memory_efficient_attention:
if parse_version(torch.__version__) >= parse_version("2"):
threestudio.info(
"PyTorch2.0 uses memory efficient attention by default."
)
elif not is_xformers_available():
threestudio.warn(
"xformers is not available, memory efficient attention is not enabled."
)
else:
threestudio.warn(
f"Use DeepFloyd with xformers may raise error, see https://github.com/deep-floyd/IF/issues/52 to track this problem."
)
self.pipe.enable_xformers_memory_efficient_attention()
if self.cfg.enable_sequential_cpu_offload:
self.pipe.enable_sequential_cpu_offload()
if self.cfg.enable_attention_slicing:
self.pipe.enable_attention_slicing(1)
if self.cfg.enable_channels_last_format:
self.pipe.unet.to(memory_format=torch.channels_last)
self.unet = self.pipe.unet.eval()
for p in self.unet.parameters():
p.requires_grad_(False)
self.scheduler = self.pipe.scheduler
self.num_train_timesteps = self.scheduler.config.num_train_timesteps
self.set_min_max_steps() # set to default value
if self.cfg.time_prior is not None:
m1, m2, s1, s2 = self.cfg.time_prior
weights = torch.cat(
(
torch.exp(
-((torch.arange(self.num_train_timesteps, m1, -1) - m1) ** 2)
/ (2 * s1**2)
),
torch.ones(m1 - m2 + 1),
torch.exp(
-((torch.arange(m2 - 1, 0, -1) - m2) ** 2) / (2 * s2**2)
),
)
)
weights = weights / torch.sum(weights)
self.time_prior_acc_weights = torch.cumsum(weights, dim=0)
self.alphas: Float[Tensor, "..."] = self.scheduler.alphas_cumprod.to(
self.device
)
self.scheduler.alphas_cumprod = self.scheduler.alphas_cumprod.to(
self.device
)
self.grad_clip_val: Optional[float] = None
threestudio.info(f"Loaded Deep Floyd!")
@torch.cuda.amp.autocast(enabled=False)
def set_min_max_steps(self, min_step_percent=0.02, max_step_percent=0.98):
self.min_step = int(self.num_train_timesteps * min_step_percent)
self.max_step = int(self.num_train_timesteps * max_step_percent)
@torch.cuda.amp.autocast(enabled=False)
def forward_unet(
self,
latents: Float[Tensor, "..."],
t: Float[Tensor, "..."],
encoder_hidden_states: Float[Tensor, "..."],
) -> Float[Tensor, "..."]:
input_dtype = latents.dtype
return self.unet(
latents.to(self.weights_dtype),
t.to(self.weights_dtype),
encoder_hidden_states=encoder_hidden_states.to(self.weights_dtype),
).sample.to(input_dtype)
def __call__(
self,
rgb: Float[Tensor, "B H W C"],
prompt_utils: PromptProcessorOutput,
elevation: Float[Tensor, "B"],
azimuth: Float[Tensor, "B"],
camera_distances: Float[Tensor, "B"],
current_step_ratio=None,
mask: Float[Tensor, "B H W 1"] = None,
rgb_as_latents=False,
guidance_eval=False,
**kwargs,
):
batch_size = rgb.shape[0]
rgb_BCHW = rgb.permute(0, 3, 1, 2)
if mask is not None:
mask = mask.permute(0, 3, 1, 2)
mask = F.interpolate(
mask, (64, 64), mode="bilinear", align_corners=False
)
assert rgb_as_latents == False, f"No latent space in {self.__class__.__name__}"
rgb_BCHW = rgb_BCHW * 2.0 - 1.0 # scale to [-1, 1] to match the diffusion range
latents = F.interpolate(
rgb_BCHW, (64, 64), mode="bilinear", align_corners=False
)
if self.cfg.time_prior is not None:
time_index = torch.where(
(self.time_prior_acc_weights - current_step_ratio) > 0
)[0][0]
if time_index == 0 or torch.abs(
self.time_prior_acc_weights[time_index] - current_step_ratio
) < torch.abs(
self.time_prior_acc_weights[time_index - 1] - current_step_ratio
):
t = self.num_train_timesteps - time_index
else:
t = self.num_train_timesteps - time_index + 1
t = torch.clip(t, self.min_step, self.max_step + 1)
t = torch.full((batch_size,), t, dtype=torch.long, device=self.device)
else:
# timestep ~ U(0.02, 0.98) to avoid very high/low noise level
t = torch.randint(
self.min_step,
self.max_step + 1,
[batch_size],
dtype=torch.long,
device=self.device,
)
if prompt_utils.use_perp_neg:
(
text_embeddings,
neg_guidance_weights,
) = prompt_utils.get_text_embeddings_perp_neg(
elevation, azimuth, camera_distances, self.cfg.view_dependent_prompting
)
with torch.no_grad():
noise = torch.randn_like(latents)
latents_noisy = self.scheduler.add_noise(latents, noise, t)
if mask is not None:
latents_noisy = (1 - mask) * latents + mask * latents_noisy
latent_model_input = torch.cat([latents_noisy] * 4, dim=0)
noise_pred = self.forward_unet(
latent_model_input,
torch.cat([t] * 4),
encoder_hidden_states=text_embeddings,
) # (4B, 6, 64, 64)
noise_pred_text, _ = noise_pred[:batch_size].split(3, dim=1)
noise_pred_uncond, _ = noise_pred[batch_size : batch_size * 2].split(
3, dim=1
)
noise_pred_neg, _ = noise_pred[batch_size * 2 :].split(3, dim=1)
e_pos = noise_pred_text - noise_pred_uncond
accum_grad = 0
n_negative_prompts = neg_guidance_weights.shape[-1]
for i in range(n_negative_prompts):
e_i_neg = noise_pred_neg[i::n_negative_prompts] - noise_pred_uncond
accum_grad += neg_guidance_weights[:, i].view(
-1, 1, 1, 1
) * perpendicular_component(e_i_neg, e_pos)
noise_pred = noise_pred_uncond + self.cfg.guidance_scale * (
e_pos + accum_grad
)
else:
neg_guidance_weights = None
text_embeddings = prompt_utils.get_text_embeddings(
elevation, azimuth, camera_distances, self.cfg.view_dependent_prompting
)
# predict the noise residual with unet, NO grad!
with torch.no_grad():
# add noise
noise = torch.randn_like(latents) # TODO: use torch generator
latents_noisy = self.scheduler.add_noise(latents, noise, t)
if mask is not None:
latents_noisy = (1 - mask) * latents + mask * latents_noisy
# pred noise
latent_model_input = torch.cat([latents_noisy] * 2, dim=0)
noise_pred = self.forward_unet(
latent_model_input,
torch.cat([t] * 2),
encoder_hidden_states=text_embeddings,
) # (2B, 6, 64, 64)
# perform guidance (high scale from paper!)
noise_pred_text, noise_pred_uncond = noise_pred.chunk(2)
noise_pred_text, predicted_variance = noise_pred_text.split(3, dim=1)
noise_pred_uncond, _ = noise_pred_uncond.split(3, dim=1)
noise_pred = noise_pred_text + self.cfg.guidance_scale * (
noise_pred_text - noise_pred_uncond
)
"""
# thresholding, experimental
if self.cfg.thresholding:
assert batch_size == 1
noise_pred = torch.cat([noise_pred, predicted_variance], dim=1)
noise_pred = custom_ddpm_step(self.scheduler,
noise_pred, int(t.item()), latents_noisy, **self.pipe.prepare_extra_step_kwargs(None, 0.0)
)
"""
if self.cfg.weighting_strategy == "sds":
# w(t), sigma_t^2
w = (1 - self.alphas[t]).view(-1, 1, 1, 1)
elif self.cfg.weighting_strategy == "uniform":
w = 1
elif self.cfg.weighting_strategy == "fantasia3d":
w = (self.alphas[t] ** 0.5 * (1 - self.alphas[t])).view(-1, 1, 1, 1)
else:
raise ValueError(
f"Unknown weighting strategy: {self.cfg.weighting_strategy}"
)
grad = w * (noise_pred - noise)
grad = torch.nan_to_num(grad)
# clip grad for stable training?
if self.grad_clip_val is not None:
grad = grad.clamp(-self.grad_clip_val, self.grad_clip_val)
# loss = SpecifyGradient.apply(latents, grad)
# SpecifyGradient is not straghtforward, use a reparameterization trick instead
target = (latents - grad).detach()
# d(loss)/d(latents) = latents - target = latents - (latents - grad) = grad
loss_sd = 0.5 * F.mse_loss(latents, target, reduction="sum") / batch_size
guidance_out = {
"loss_sd": loss_sd,
"grad_norm": grad.norm(),
"min_step": self.min_step,
"max_step": self.max_step,
}
# # FIXME: Visualize inpainting results
# self.scheduler.set_timesteps(20)
# latents = latents_noisy
# for t in tqdm(self.scheduler.timesteps):
# # pred noise
# noise_pred = self.get_noise_pred(
# latents, t, text_embeddings, prompt_utils.use_perp_neg, None
# )
# # get prev latent
# prev_latents = latents
# latents = self.scheduler.step(noise_pred, t, latents)["prev_sample"]
# if mask is not None:
# latents = (1 - mask) * prev_latents + mask * latents
# denoised_img = (latents / 2 + 0.5).permute(0, 2, 3, 1)
# guidance_out.update(
# {"denoised_img": denoised_img}
# )
if guidance_eval:
guidance_eval_utils = {
"use_perp_neg": prompt_utils.use_perp_neg,
"neg_guidance_weights": neg_guidance_weights,
"text_embeddings": text_embeddings,
"t_orig": t,
"latents_noisy": latents_noisy,
"noise_pred": torch.cat([noise_pred, predicted_variance], dim=1),
}
guidance_eval_out = self.guidance_eval(**guidance_eval_utils)
texts = []
for n, e, a, c in zip(
guidance_eval_out["noise_levels"], elevation, azimuth, camera_distances
):
texts.append(
f"n{n:.02f}\ne{e.item():.01f}\na{a.item():.01f}\nc{c.item():.02f}"
)
guidance_eval_out.update({"texts": texts})
guidance_out.update({"eval": guidance_eval_out})
return guidance_out
@torch.cuda.amp.autocast(enabled=False)
@torch.no_grad()
def get_noise_pred(
self,
latents_noisy,
t,
text_embeddings,
use_perp_neg=False,
neg_guidance_weights=None,
):
batch_size = latents_noisy.shape[0]
if use_perp_neg:
latent_model_input = torch.cat([latents_noisy] * 4, dim=0)
noise_pred = self.forward_unet(
latent_model_input,
torch.cat([t.reshape(1)] * 4).to(self.device),
encoder_hidden_states=text_embeddings,
) # (4B, 6, 64, 64)
noise_pred_text, _ = noise_pred[:batch_size].split(3, dim=1)
noise_pred_uncond, _ = noise_pred[batch_size : batch_size * 2].split(
3, dim=1
)
noise_pred_neg, _ = noise_pred[batch_size * 2 :].split(3, dim=1)
e_pos = noise_pred_text - noise_pred_uncond
accum_grad = 0
n_negative_prompts = neg_guidance_weights.shape[-1]
for i in range(n_negative_prompts):
e_i_neg = noise_pred_neg[i::n_negative_prompts] - noise_pred_uncond
accum_grad += neg_guidance_weights[:, i].view(
-1, 1, 1, 1
) * perpendicular_component(e_i_neg, e_pos)
noise_pred = noise_pred_uncond + self.cfg.guidance_scale * (
e_pos + accum_grad
)
else:
latent_model_input = torch.cat([latents_noisy] * 2, dim=0)
noise_pred = self.forward_unet(
latent_model_input,
torch.cat([t.reshape(1)] * 2).to(self.device),
encoder_hidden_states=text_embeddings,
) # (2B, 6, 64, 64)
# perform guidance (high scale from paper!)
noise_pred_text, noise_pred_uncond = noise_pred.chunk(2)
noise_pred_text, predicted_variance = noise_pred_text.split(3, dim=1)
noise_pred_uncond, _ = noise_pred_uncond.split(3, dim=1)
noise_pred = noise_pred_text + self.cfg.guidance_scale * (
noise_pred_text - noise_pred_uncond
)
return torch.cat([noise_pred, predicted_variance], dim=1)
@torch.cuda.amp.autocast(enabled=False)
@torch.no_grad()
def guidance_eval(
self,
t_orig,
text_embeddings,
latents_noisy,
noise_pred,
use_perp_neg=False,
neg_guidance_weights=None,
):
# use only 50 timesteps, and find nearest of those to t
self.scheduler.set_timesteps(50)
self.scheduler.timesteps_gpu = self.scheduler.timesteps.to(self.device)
bs = (
min(self.cfg.max_items_eval, latents_noisy.shape[0])
if self.cfg.max_items_eval > 0
else latents_noisy.shape[0]
) # batch size
large_enough_idxs = self.scheduler.timesteps_gpu.expand([bs, -1]) > t_orig[
:bs
].unsqueeze(
-1
) # sized [bs,50] > [bs,1]
idxs = torch.min(large_enough_idxs, dim=1)[1]
t = self.scheduler.timesteps_gpu[idxs]
fracs = list((t / self.scheduler.config.num_train_timesteps).cpu().numpy())
imgs_noisy = (latents_noisy[:bs] / 2 + 0.5).permute(0, 2, 3, 1)
# get prev latent
latents_1step = []
pred_1orig = []
for b in range(bs):
step_output = self.scheduler.step(
noise_pred[b : b + 1], t[b], latents_noisy[b : b + 1]
)
latents_1step.append(step_output["prev_sample"])
pred_1orig.append(step_output["pred_original_sample"])
latents_1step = torch.cat(latents_1step)
pred_1orig = torch.cat(pred_1orig)
imgs_1step = (latents_1step / 2 + 0.5).permute(0, 2, 3, 1)
imgs_1orig = (pred_1orig / 2 + 0.5).permute(0, 2, 3, 1)
latents_final = []
for b, i in enumerate(idxs):
latents = latents_1step[b : b + 1]
text_emb = (
text_embeddings[
[b, b + len(idxs), b + 2 * len(idxs), b + 3 * len(idxs)], ...
]
if use_perp_neg
else text_embeddings[[b, b + len(idxs)], ...]
)
neg_guid = neg_guidance_weights[b : b + 1] if use_perp_neg else None
for t in tqdm(self.scheduler.timesteps[i + 1 :], leave=False):
# pred noise
noise_pred = self.get_noise_pred(
latents, t, text_emb, use_perp_neg, neg_guid
)
# get prev latent
latents = self.scheduler.step(noise_pred, t, latents)["prev_sample"]
latents_final.append(latents)
latents_final = torch.cat(latents_final)
imgs_final = (latents_final / 2 + 0.5).permute(0, 2, 3, 1)
return {
"bs": bs,
"noise_levels": fracs,
"imgs_noisy": imgs_noisy,
"imgs_1step": imgs_1step,
"imgs_1orig": imgs_1orig,
"imgs_final": imgs_final,
}
def update_step(self, epoch: int, global_step: int, on_load_weights: bool = False):
# clip grad for stable training as demonstrated in
# Debiasing Scores and Prompts of 2D Diffusion for Robust Text-to-3D Generation
# http://arxiv.org/abs/2303.15413
if self.cfg.grad_clip is not None:
self.grad_clip_val = C(self.cfg.grad_clip, epoch, global_step)
self.set_min_max_steps(
min_step_percent=C(self.cfg.min_step_percent, epoch, global_step),
max_step_percent=C(self.cfg.max_step_percent, epoch, global_step),
)
"""
# used by thresholding, experimental
def custom_ddpm_step(ddpm, model_output: torch.FloatTensor, timestep: int, sample: torch.FloatTensor, generator=None, return_dict: bool = True):
self = ddpm
t = timestep
prev_t = self.previous_timestep(t)
if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]:
model_output, predicted_variance = torch.split(model_output, sample.shape[1], dim=1)
else:
predicted_variance = None
# 1. compute alphas, betas
alpha_prod_t = self.alphas_cumprod[t].item()
alpha_prod_t_prev = self.alphas_cumprod[prev_t].item() if prev_t >= 0 else 1.0
beta_prod_t = 1 - alpha_prod_t
beta_prod_t_prev = 1 - alpha_prod_t_prev
current_alpha_t = alpha_prod_t / alpha_prod_t_prev
current_beta_t = 1 - current_alpha_t
# 2. compute predicted original sample from predicted noise also called
# "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf
if self.config.prediction_type == "epsilon":
pred_original_sample = (sample - beta_prod_t ** (0.5) * model_output) / alpha_prod_t ** (0.5)
elif self.config.prediction_type == "sample":
pred_original_sample = model_output
elif self.config.prediction_type == "v_prediction":
pred_original_sample = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output
else:
raise ValueError(
f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` or"
" `v_prediction` for the DDPMScheduler."
)
# 3. Clip or threshold "predicted x_0"
if self.config.thresholding:
pred_original_sample = self._threshold_sample(pred_original_sample)
elif self.config.clip_sample:
pred_original_sample = pred_original_sample.clamp(
-self.config.clip_sample_range, self.config.clip_sample_range
)
noise_thresholded = (sample - (alpha_prod_t ** 0.5) * pred_original_sample) / (beta_prod_t ** 0.5)
return noise_thresholded
"""
if __name__ == '__main__':
from threestudio.utils.config import load_config
import pytorch_lightning as pl
import numpy as np
import os
import cv2
cfg = load_config("configs/debugging/deepfloyd.yaml")
guidance = threestudio.find(cfg.system.guidance_type)(cfg.system.guidance)
prompt_processor = threestudio.find(cfg.system.prompt_processor_type)(cfg.system.prompt_processor)
prompt_utils = prompt_processor()
temp = torch.zeros(1).to(guidance.device)
# rgb_image = guidance.sample(prompt_utils, temp, temp, temp, seed=cfg.seed)
# rgb_image = (rgb_image[0].detach().cpu().clip(0, 1).numpy()*255).astype(np.uint8)[:, :, ::-1].copy()
# os.makedirs('.threestudio_cache', exist_ok=True)
# cv2.imwrite('.threestudio_cache/diffusion_image.jpg', rgb_image)
### inpaint
rgb_image = cv2.imread("assets/test.jpg")[:, :, ::-1].copy() / 255
mask_image = cv2.imread("assets/mask.png")[:, :, :1].copy() / 255
rgb_image = cv2.resize(rgb_image, (512, 512))
mask_image = cv2.resize(mask_image, (512, 512)).reshape(512, 512, 1)
rgb_image = torch.FloatTensor(rgb_image).unsqueeze(0).to(guidance.device)
mask_image = torch.FloatTensor(mask_image).unsqueeze(0).to(guidance.device)
guidance_out = guidance(rgb_image, prompt_utils, temp, temp, temp, mask=mask_image)
edit_image = (
(guidance_out["denoised_img"][0].detach().cpu().clip(0, 1).numpy() * 255)
.astype(np.uint8)[:, :, ::-1]
.copy()
)
os.makedirs(".threestudio_cache", exist_ok=True)
cv2.imwrite(".threestudio_cache/edit_image.jpg", edit_image)