mirror of
https://github.com/deepseek-ai/DeepSeek-VL2.git
synced 2025-02-23 14:19:03 -05:00
146 lines
4.4 KiB
Python
Executable File
146 lines
4.4 KiB
Python
Executable File
import json
|
|
import time
|
|
import sys
|
|
import os
|
|
from gradio_client import Client, handle_file
|
|
|
|
# Replace with the actual server URL if different
|
|
ip = "127.0.0.1"
|
|
port = "8080"
|
|
|
|
# Define the user prompt (caption)
|
|
user_prompt = "Thoroughly and carefully describe this image."
|
|
|
|
files = []
|
|
output_file = "output.json"
|
|
|
|
# Hyperparameters
|
|
temperature = 0.6
|
|
top_k = 50
|
|
top_p = 0.9
|
|
max_tokens = 100
|
|
|
|
startAt = 0
|
|
|
|
argumentStart = 1
|
|
if len(sys.argv) > 1:
|
|
for i in range(0, len(sys.argv)):
|
|
if sys.argv[i] == "--ip":
|
|
ip = sys.argv[i + 1]
|
|
argumentStart += 2
|
|
if sys.argv[i] == "--directory":
|
|
directory = sys.argv[i + 1]
|
|
argumentStart += 2
|
|
# Populate files with image (.jpg, .png) contents of directory
|
|
if os.path.isdir(directory):
|
|
directoryList = os.listdir(directory)
|
|
directoryList.sort()
|
|
for file in directoryList:
|
|
if file.lower().endswith(('.jpg', '.png', '.jpeg', '.txt')):
|
|
files.append(os.path.join(directory, file))
|
|
else:
|
|
print(f"Error: Directory '{directory}' does not exist.")
|
|
sys.exit(1)
|
|
elif sys.argv[i] == "--start":
|
|
startAt = int(sys.argv[i + 1])
|
|
argumentStart += 2
|
|
elif sys.argv[i] == "--port":
|
|
port = sys.argv[i + 1]
|
|
argumentStart += 2
|
|
elif sys.argv[i] == "--prompt":
|
|
user_prompt = sys.argv[i + 1]
|
|
argumentStart += 2
|
|
elif sys.argv[i] == "--temperature":
|
|
temperature = float(sys.argv[i + 1])
|
|
argumentStart += 2
|
|
elif sys.argv[i] == "--top_k":
|
|
top_k = int(sys.argv[i + 1])
|
|
argumentStart += 2
|
|
elif sys.argv[i] == "--top_p":
|
|
top_p = float(sys.argv[i + 1])
|
|
argumentStart += 2
|
|
elif sys.argv[i] == "--max_tokens":
|
|
max_tokens = int(sys.argv[i + 1])
|
|
argumentStart += 2
|
|
elif sys.argv[i] in ("--output", "-o"):
|
|
output_file = sys.argv[i + 1]
|
|
argumentStart += 2
|
|
|
|
# Initialize the Gradio client with the server URL
|
|
client = Client(f"http://{ip}:{port}")
|
|
|
|
results = {"prompt": user_prompt}
|
|
|
|
for i in range(argumentStart, len(sys.argv)):
|
|
files.append(sys.argv[i])
|
|
|
|
# Make sure the list is sorted
|
|
files.sort()
|
|
|
|
# Possibly start at a specific index
|
|
for i in range(startAt, len(files)):
|
|
# Grab the next image path
|
|
image_path = files[i]
|
|
|
|
# Count start time
|
|
start = time.time()
|
|
|
|
# Make query to VLLM
|
|
try:
|
|
imageFile = None
|
|
this_user_prompt = user_prompt
|
|
if image_path.endswith('.txt'):
|
|
with open(image_path, 'r') as txt_file:
|
|
this_user_prompt = txt_file.read().strip()
|
|
else:
|
|
imageFile = handle_file(image_path)
|
|
|
|
# Send the image file path and the prompt to the Gradio app for processing
|
|
result = client.predict(
|
|
input_images=[imageFile], # Provide the file path directly
|
|
input_text=this_user_prompt, # Adapted prompt parameter
|
|
api_name="/transfer_input"
|
|
)
|
|
|
|
result = client.predict(
|
|
chatbot=[],
|
|
temperature=temperature,
|
|
#top_k=top_k,
|
|
top_p=top_p,
|
|
max_length_tokens=max_tokens, # Adapted max_tokens parameter
|
|
repetition_penalty=1.1,
|
|
max_context_length_tokens=4096,
|
|
model_select_dropdown="deepseek-ai/deepseek-vl2-tiny",
|
|
api_name="/predict"
|
|
)
|
|
|
|
|
|
|
|
except Exception as e:
|
|
print(f"Failed to complete job at index {i}: {e}")
|
|
output_file = f"partial_until_{i}_{output_file}"
|
|
break
|
|
|
|
# Calculate elapsed time
|
|
seconds = time.time() - start
|
|
remaining = (len(files) - i) * seconds
|
|
hz = 1 / (seconds + 0.0001)
|
|
|
|
# Output the result
|
|
#print("result[0][0][1] ",result[0][0][1])
|
|
question = this_user_prompt #Don't try to recover it from the list..
|
|
response = result[0][0][1]
|
|
|
|
# Print on screen
|
|
print(f"Processing {1 + i}/{len(files)} | {hz:.2f} Hz / remaining {remaining / 60:.2f} minutes")
|
|
print(f"Image: {image_path}\nResponse: {response}")
|
|
|
|
# Store each path as the key pointing to each description
|
|
results[image_path] = response
|
|
|
|
# Save results to JSON
|
|
print(f"\n\n\nStoring results in JSON file {output_file}")
|
|
with open(output_file, "w") as outfile:
|
|
json.dump(results, outfile, indent=4)
|
|
|