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Abstract

We present DeepSeek-VL2, an advanced series of large Mixture-of-Experts (MoE) Vision-
Language Models that significantly improves upon its predecessor, DeepSeek-VL, through two
key major upgrades. For the vision component, we incorporate a dynamic tiling vision encoding
strategy designed for processing high-resolution images with different aspect ratios. For the
language component, we leverage DeepSeekMoE models with the Multi-head Latent Attention
mechanism, which compresses Key-Value cache into latent vectors, to enable efficient inference
and high throughput. Trained on an improved vision-language dataset, DeepSeek-VL2 demon-
strates superior capabilities across various tasks, including but not limited to visual question
answering, optical character recognition, document/table/chart understanding, and visual
grounding. Our model series is composed of three variants: DeepSeek-VL2-Tiny, DeepSeek-VL2-
Small and DeepSeek-VL2, with 1.0B, 2.8B and 4.5B activated parameters respectively. DeepSeek-
VL2 achieves competitive or state-of-the-art performance with similar or fewer activated param-
eters compared to existing open-source dense and MoE-based models. Codes and pre-trained
models are publicly accessible at https://github.com/deepseek-ai/DeepSeek-VL2.
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Figure 1 | Average performance vs. activated parameters among different open-source models.
We average the accuracy of MMBench v1.1, MMStar, MMMU (Val), MathVista (TestMini), AI2D
(Test), and OCRBench. The scores of OCRBench are divided by 10 to scale them to [0, 100].
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1. Introduction

Large Vision-Language Models (VLMs) have emerged as a transformative force in artificial
intelligence [15, 54, 59, 63, 83, 88, 94], extending the remarkable capabilities of Large Language
Models (LLMs) to seamlessly process both visual and textual information. This advancement has
dramatically expanded the potential for Al systems to tackle complex real-world applications
that require multimodal understanding.

In this technical report, we present DeepSeek-VL2, a new series of open-source Vision-
Language Models that leverages the Mixture-of-Experts (MoE) architecture to achieve substantial
improvements in both performance and efficiency compared to its predecessor, DeepSeek-
VL [59]. Our advancements center around three key aspects: (1) a dynamic, high-resolution
vision encoding strategy that enhances visual understanding, (2) an optimized language model
architecture that significantly improves both training and inference efficiency, and (3) a refined
vision-language data construction pipeline that not only boosts overall performance but also
extends model capabilities to new areas such as precise visual grounding.

For the vision component, we introduce a dynamic tiling vision encoding strategy that
efficiently processes high-resolution images of varying aspect ratios. This approach improves
over DeepSeek-VL's hybrid vision encoder, which extracted features from images at two fixed
resolutions (384 x 384 and 1024 x 1024). Our approach avoids the limitations of the old fixed-
size encoder and excels in tasks requiring ultra-high resolution, including visual grounding,
document/table/chart analysis, and detailed feature extraction, while maintaining a manageable
number of visual tokens. Drawing inspiration from established slicing-tile methods, our system
dynamically segments high-resolution inputs into local tiles, processes each tile through a shared
vision transformer, and seamlessly integrates the extracted features within the language model.
This design preserves the advantages of vision transformers with local attention, enabling
rich feature extraction without the quadratic computational scaling typically associated with
increasing image resolutions.

For the language component, we leverage DeepSeek language models [20, 53], featuring the
Multi-head Latent Attention (MLA) mechanism. MLA significantly reduces computational cost
by compressing the Key-Value (KV) cache into a latent vector, resulting in faster inference and
increased throughput capacity. We further enhance efficiency through the DeepSeekMOoE frame-
work [20, 86], which employs sparse computation techniques. Our model series adopt three
MoE variants, 3B, 16B, and 27B. These LLMs have 0.57B, 2.4B, and 4.1B activated parameters
respectively.

We also greatly enhance our vision-language training data in terms of quality, quantity, and
diversity. This comprehensive dataset enables better generalization and performance across
a broad spectrum of tasks, including Visual Question Answering (VQA), Optical Character
Recognition (OCR), document/table/chart understanding, visual reasoning, and general chatbot
applications. The improved training data has also enabled new abilities such as visual grounding
and Graphical User Interface (GUI) perception.

In summary, DeepSeek-VL2 marks a substantial leap forward in large-scale Mixture-of-
Experts Vision-Language modeling. Through a new visual processing strategy and an optimized
language model, we develop a series of models that balances performance with efficiency. By
open-sourcing the pre-trained models, we aim to accelerate progress in the field and promote
collaborative research advancement.
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Figure 2 | Overview of DeepSeek-VL2. The overall structure is a llava-style architecture, which
includes a vision encoder, a VL adaptor, and a MoE-based LLM.

2. Model Architecture

DeepSeek-VL2 consists of three core modules: (1) a vision encoder, (2) a vision-language
adaptor, and (3) a Mixture-of-Experts language model. Building upon the decoder-only LLaVA-
style [54] architecture of its predecessor, DeepSeek-VL2 introduces two major advancements:
a dynamic tiling strategy and a DeepSeekMOE [20, 86] language model featuring Multi-head
Latent Attention [53]. These innovations enable more efficient processing of both high-resolution
visual inputs and text data.

Dynamic Tiling Strategy. The original DeepSeek-VL employed a hybrid vision encoder
combining SigLIP [106] for coarse-grained feature extraction at 384 x 384 resolution and SAM-
B [35] for fine-grained feature extraction at 1024 x 1024 resolution. While this fusion approach
generated rich visual representations suitable for various vision-language tasks, it was limited
by the fixed 1024 x 1024 resolution constraint. This limitation is particularly challenging for
processing images with larger resolutions and extreme aspect ratios, such as those found in
InfographicVQA [67], dense OCR, and detailed visual grounding tasks.

Inspired by recent advances in VLMs [16, 21, 55], we implement a dynamic tiling strategy
by splitting a high-resolution image into tiles. This approach enables the efficient processing of
different high-resolution images with varying aspect ratios using a single SigLIP-SO400M-384
vision encoder [106]. The pre-trained SigLIP operates at a base resolution of 384 x 384. To
accommodate different aspect ratios, we define a set of candidate resolutions: Cg = {(m - 384, n -
384) | me N,n e N,1 <m,n,mn < 9}, where m : n represents the aspect ratio. For an input
image of size (H, W), we calculate the padding area required for resizing! it to each candidate
resolution in Cgr. We select the resolution (m; - 384, n; - 384) that minimizes the padding area.
The resized image is then divided into m; x n; local tiles of 384 x 384 pixels, plus one global
thumbnail tile. The SigLIP-50400M-384 vision encoder processes all (1 + m; X n;) tiles, yielding
27 x 27 = 729 visual embeddings of 1152 dimensions per tile. For computational efficiency and
context length management, we disable the dynamic tiling strategy when processing multiple
(> 2) images.

1We first resize the original image until its long side matches the target resolution, then pad the other dimension
while maintaining the original aspect ratio.
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Figure 3 | Illustration of dynamic tiling strategy in DeepSeek-VL2. By dividing images
into multiple tiles, DeepSeek-VL2 achieves stronger fine-grained understanding capabilities
compared to DeepSeek-VL.

Table 1 | Architectural configuration for DeepSeek-VL2. We list the hyperparameters of the
architecture along with the details related to the mixture-of-expert training.

DeepSeek-VL2-Tiny | DeepSeek-VL2-Small | DeepSeek-VL2
Vocabulary size 129,280 102,400 129,280
Embedding size 1,280 2,048 2,560
#Attention heads 10 16 32
#Layers 12 27 30
Attention Multi-Head Attention MLA (rank=512) MLA (rank=512)
#Routed experts 64 64 72
#Shared experts 2 2 2
Top-K for expert selection 6 6 6
Routing function Softmax Softmax Sigmoid
Expert correction bias X X v

Vision-Language Adaptor. Following visual tile processing, we implement a 2 x 2 pixel
shuffle operation to compress each tile’s visual tokens from 27 x 27 to 14 x 14 = 196 tokens.
We then introduce three special tokens when processing the (1 + m; x n;) tiles. For the global
thumbnail tile (14 x 14), we add 14 <tile_newline> tokens to the end of each row, resulting in
a total number of 14 x 15 = 210 tokens. For the m; x n; local tiles, which are arranged in a 2D
grid of shape (m; - 14, n; - 14), we append m; - 14 <tile_newline> tokens at the end of the final
column to indicate the end of a row of all the local tiles. Additionally, a <view_separator>
token is inserted between the global thumbnail tile and the local tiles. The complete visual
sequence contains 210+ 1+ m; - 14 X (n; - 14 + 1) visual tokens, which are subsequently projected
into the language model’s embedding space using a two-layer multilayer perceptron (MLP). A
visual illustration of our dynamic tiling strategy is shown in Figure 3.

DeepSeekMoE LLM. Our language model is based on DeepSeekMOoE [20, 86], which incor-
porates the Multi-head Latent Attention mechanism [53]. MLA enhances inference efficiency by
compressing the Key-Value cache into a latent vector, enabling increased throughput capacity.
The model also incorporates a MoE architecture [20] allowing for efficient inference through
sparse computation. During MoE training, we introduce a global bias term [86] for each expert to
cost-effectively improve load balancing between experts. DeepSeek-VL2 comes in three variants
with the following model sizes: 1.0B, 2.8B and 4.5B. Complete architectural specifications can be
found in Table 1.



3. Data Construction

We build a comprehensive Vision-Language dataset from diverse sources for DeepSeek-VL2.
The training process is structured into three distinct stages: (1) VL alignment, (2) VL pretraining,
and (3) supervised fine-tuning (SFT). In the following parts, we provide descriptions of the data
used in each stage.

3.1. Vision-Language Alignment Data

The alignment stage focuses on training the MLP connector to bridge the pretrained visual
encoder and the LLM. For this initial warmup phase, we utilize ShareGPT4V [12], a dataset
containing approximately 1.2M caption and conversation samples.

3.2. Vision-Language Pretraining Data

Following DeepSeek-VL [59], our pretraining data combines vision-language (VL) and text-only
data to maintain a balance between VL capabilities and text-only performance. For DeepSeek-
VL2, we maintain a ratio of around 70% VL data to 30% text-only data, with the latter sourced
directly from our base LLM pretraining corpus. In the following, we categorize the VL data into
several groups and describe their details.

Interleaved image-text data. Our data collection begins with several open-sourced datasets,
including WIT [79], WikiHow [38], and 30% random samples from OBELICS [41]. This specific
mixing ratio was determined through preliminary experiments with DeepSeek-VL2-Tiny. To
enhance multilingual capabilities, we supplemented the predominantly English datasets with
Chinese content extracted from Wanjuan [29]. Additionally, we developed an in-house collection
to expand coverage of general real-world knowledge.

Image captioning data. Image captions represent fundamental data in VLM training, provid-
ing direct alignment between visual and textual information. We initially leveraged diverse
open-source datasets [8, 25, 28, 36, 37, 39, 40, 48, 50, 51, 73, 78, 80, 82]. However, our preliminary
analysis revealed severe quality variations across these datasets, ranging from dense, accurate
captions generated by advanced VLMs to problematic cases with brief descriptions, mismatched
text pairs, or obvious hallucinations. To address these quality inconsistencies, we developed a
comprehensive image captioning pipeline that considers: (1) OCR hints, (2) meta information
(e.g., location, camera settings), and (3) relevant original captions as prompts. Using an in-house
captioner, we recaption the images following prompting strategies similar to PixelProse [78],
employing varied instructions to guide the VLM’s caption generation.

Despite the overall improvement in caption quality, we observed repetition issues in the
large-scale annotation pipelines. To mitigate this, we implemented a quality control pipeline
using DeepSeek Chat [53] to score all captions simply based on their writing quality. In practice,
this approach is both efficient and effective in filtering out low-quality captions.

Optical character recognition data. To develop OCR capabilities, we used open-source datasets
including LaTeX OCR [7] and 12M RenderedText [93]. We combined these datasets with an
extensive in-house OCR dataset covering diverse document types. Currently, our in-house



dataset mainly focuses on English and Chinese character recognition. We plan to expand to
other languages in our future work.

Visual question-answering (QA) data. In our early exploration, we found general QA data
clearly benefits model pretraining. Consequently, we developed a comprehensive visual QA
dataset consisting of the following categories:

* General VQA. We inherit the general VQA data from DeepSeek-VL. For more details,
please refer to [59].

* Table, chart and document understanding. We adopt PubTabNet [112], FinTabNet [111]
and Docmatix [42] to enhance document comprehension capabilities.

* Web-to-code and plot-to-Python generation. We leverage Websight [44] for webpage-
to-code abilities and Python plots obtained from public Jupyter notebooks, following
DeepSeek-VL. We enhance this dataset by replicating a portion of Websight using DeepSeek
V2.5. We also exploit Python plot codes generated by DeepSeek V2.5 to mitigate the noises
in the plot-to-code data.

* QA with visual prompt. We follow [9] to construct visual prompt understanding data by
overlaying various visual indicators (arrows, boxes, circles, and scribbles) onto images
from [9, 89, 90]. We then created QA pairs focusing on objects highlighted by these visual
prompts.

Visual grounding data. We construct our visual grounding dataset from [71, 75]. For each
image’s object detection annotations, we structure the data as follows:

e Prompt: Locate <|ref|><query><|/ref|> in the given image.
e Response: <|ref | ><query><|/ref|><|det|>[[x1, y1, x2, y2],...]1<|/det|>

during training, the question prompts are randomly sampled from a candidate pool during
training. <|ref|>, <|/ref|>, <|det|>, <|/det|> are special tokens. <query> is a place-
holder for either the category name (e.g., “car”) or description of the object (e.g., “the leftmost
person”). [[x1, y1, x2, y2], ...] isalist of bounding boxes, where each bounding box
corresponds to an object’s position. The coordinates x1, y1 and x2, y2 specify the top-left
and bottom-right corners respectively, normalized to values between 0 and 999 according to
the resolution of the image. We also construct negative samples where queried objects are
intentionally absent from the images to enhance the robustness of the model.

Grounded conversation data. We derived our grounded conversation dataset from [71], struc-
tured in the following format:

e Prompt: <|grounding|>Can you describe the content of the image?
e Response: Two <|ref|>dogs<|/ref|><|det|>[[x1, y1, x2, y2],...]1<|/detl|>
are running on the grass.

As in other visual grounding data, <|grounding|>, <|ref|>, <|/ref|> <|det|>, <|/det|>
are special tokens and x1, y1, x2, y2issubjecttothe same normalization scheme.



3.3. Supervised Fine-tuning Data

Our SFT data combines a diverse collection of open-sourced datasets with high-quality in-house
QA pairs. Below, we detail our efforts to enhance the quality of our SFT dataset.

General visual question-answering. While public visual QA datasets are diverse [9, 10, 27,
31, 43,47, 74], they often suffer from three main limitations: (1) short responses, (2) poor OCR
quality, and (3) hallucinated content. To address these issues, we regenerate responses by jointly
considering the original questions, images, and OCR information. Our experiments demonstrate
that this approach produces more comprehensive and accurate results. During development,
we observed that an early version of DeepSeek-VL2, particularly the Tiny variant, occasionally
inserted English words inappropriately in Chinese responses. This issue was not present in our
larger models, suggesting it stemmed from limited model capacity and an imbalance between
English and Chinese data in the visual-language pretraining stage. To address this limitation
in our smaller model, we developed an in-house Chinese QA dataset with diverse image
descriptions and single/multi-round conversations. This dataset helps to mitigate the language
mixing issue. Furthermore, we created an extra in-house dataset to complement real-world and
cultural visual knowledge, including anime, memes, cuisine and art.

OCR and document understanding. Thanks to our advanced image captioning pipeline,
DeepSeek-VL2 already demonstrates superior OCR capabilities compared to other state-of-the-
art VLMs. Therefore, rather than further enhancing OCR performance during the SFT stage, we
focused on cleaning existing open-source datasets [24, 31, 43, 66, 67, 77, 92, 104] by removing
samples with poor OCR quality. For document understanding, we curated a diverse subset
of document pages from our in-house data. We then generate multi-round conversational QA
pairs specific to document comprehension. Early results indicate that this approach improves
document-based interactions.

Table and chart understanding. We enhanced table-based QA data by regenerating responses
for all public datasets [14, 49] based on their original questions except Cauldron [43], which
already exhibits high quality. Similar to our OCR capabilities developed during VL pretrain-
ing, our model demonstrated strong performance in chart understanding without requiring
additional efforts.

Reasoning, logic, and mathematics. We enhance public reasoning-focused datasets [17, 43, 61,
76,102, 109] with more detailed reasoning processes and standardize response formats which
puts the final answer at the end of the response. We observe that detailed responses are less
effective when training smaller VLMs. In our exploration, DeepSeek-VL2-Tiny shows better
performance with more concise responses.

Textbook and academic questions. We build an internal dataset focused on textbooks from our
document collection. This dataset primarily emphasizes college-level contents across multiple
academic disciplines.

Web-to-code and plot-to-Python generation. We expand our in-house dataset for web code
and Python plot code beyond what was used during pretraining. For open-source datasets, we



improve their quality by regenerating their answers.

Visual grounding. We develop our visual grounding dataset using data from [2, 23, 64, 85,
101, 110]. To boost model capabilities, we translate query phrases into Chinese and create
additional negative samples. We also add in-context visual grounding data, where the task
involves locating objects of the same category across multiple images, given a reference object
highlighted by a rectangle or ellipse in a reference image. The data format follows this structure:

e Prompt: <|grounding|>The first image shows <object>.Please identify the
object of the same category in the second image.
e Response: <|ref|><description><|/ref|><|det|>[[x1, y1, x2, y2]]l<|/det|>

In this format, <|grounding|>, <|ref|>, <|/ref|>, <|det|>, <|/det|> are special to-
kens. The <object> placeholder represents phrases like “an object within the red bounding
box” while <description> is the model’s description of the detected object (e.g., “cat”).

Grounded conversation. We construct our grounded conversation data using [62, 72] to further
enhance the model’s capabilities established during the pretraining phase.

Text-Only datasets. To maintain the language ability of the model, we also use text-only
instruction-tuning datasets [4, 6, 18, 19, 68, 70, 84, 91, 98] during the SFT stage.

4. Training Methodology

4.1. Training Pipelines

DeepSeek-VL2 is trained through a three-stage pipeline: (1) an initial stage where we train the
vision encoder and vision-language adaptor MLP while keeping the language model fixed, using
image-text paired data detailed in Section 3.1, (2) a pretraining stage where we conduct vision-
language pre-training using the data described in Section 3.2, and (3) a fine-tuning stage where
we perform supervised fine-tuning with the data outlined in Section 3.3. In both the pretraining
and fine-tuning stages, all model parameters, including the vision encoder, vision-language
adaptor, and language model, are unlocked and trained simultaneously. Throughout all stages,
we emphasize visual understanding capabilities and compute the next token prediction loss
exclusively on the text tokens.

Vision-Language Alignment. Building upon pre-trained language models (DeepSeekMoE
3B/16B/27B), our primary objective is to establish robust connections between visual features
and language features. This alignment enables the pre-trained language model to effectively
handle visual inputs. Unlike previous approaches [54, 59], which maintain fixed pretrained
vision encoders and language models, we adapt the fixed-resolution vision encoder to accom-
modate dynamic high-resolution images. In this stage, we optimize both the vision encoder and
vision-language adaptor while keeping the language model frozen.

Vision-Language Pre-training. After establishing the vision-language alignment in the
embedding space, we dedicate the majority of our computational resources to vision-language
pre-training. This stage focuses on developing comprehensive joint vision-language knowledge
across diverse tasks. We unfreeze all parameters, including the vision encoder, vision-language



Table 2 | Hyperparameters for training DeepSeek-VL2. The Step LR Scheduler divides the
learning rate by V10 at 50% and 75% of the total training steps.

DeepSeek-VL2-Tiny DeepSeek-VL2-Small DeepSeek-VL2
Total parameters (LLM) 3B 16B 27B
Activated parameters (LLM) 0.57B 2.4B 4.1B
Vision Encoder SigLIP-50400M SigLIP-50400M SigLIP-50400M
Hyperparameters Stage1 Stage2 Stage3 | Stage1l Stage2 Stage3 | Stagel Stage2 Stage3
Learning rate 54%x107%54%x107% 3.0x107°/4.2x107* 42x107* 1.4x 107> (4.5x 1074 4.5x 107 2x107°
Visual Encoder LR multiplier| 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
Fix langauge model v X X v X X v X X
LR scheduler Cosine Step  Constant| Cosine Step  Constant| Cosine Step  Constant
Weight decay 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
Gradient clip 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Optimizer AdamW(B1 =0.9,8, =0.95) | AdamW(B; =0.9,8, =0.95) | AdamW(B; = 0.9, 8> = 0.95)
BF16 optimizer X X X X X X v v v
Aux loss weight 0.001 0.001 0.001 0.001 0.001 0.001 0.0001  0.0001  0.0001
Expert bias correction step - - - - - - 0 0.001 0
Training tokens 2.0B 798.5B 19.5B 2.0B 808.9B 20.0B 2.0B 796.5B 19.5B
Batch size 256 2304 64 256 2304 64 256 3360 64
Sequence length 4096 4096 4096 4096 4096 4096 4096 4096 4096
Sequence packing X v v X v v X v v
Pipeline parallelism X v v v v v v v v

adaptor MLP, and DeepSeekMoE LLM, to enable full model optimization. Using approximately
800B image-text tokens (Section 3.2), this stage significantly enhances the model’s multimodal
understanding capabilities while maintaining most of its language capabilities.

Supervised Fine-Tuning. In the final stage, we enhance the pre-trained model’s instruction-
following and conversational capabilities through supervised fine-tuning. Using our in-house
vision-language SFT data, we optimize all parameters while supervising only the answers and
special tokens, masking both system and user prompts. To strengthen dialogue comprehension,
we combine multimodal data with the pure text dialogue data from DeepSeek-V2 [53]. This
approach ensures robust performance across diverse vision-language tasks, including dense
image captioning, general VQA, OCR, table/chart/document/figure understanding, visual-to-
code, visual reasoning, visual grounding, and language understanding, etc..

4.2. Hyperparameters and Infrastructures

Detailed hyperparameters for DeepSeek-VL2 training are listed in Table 2. We conducted our
training and evaluation using HAI-LLM [30], an efficient and lightweight platform designed
for large models. A significant challenge in our pipeline parallel strategy arose from the
vision encoder’s unique computational characteristics compared to LLM blocks. As the first
component in the model pipeline, the vision encoder requires careful load balancing across GPUs
to prevent pipeline bubbles and optimize GPU utilization. To address this, we implemented
fine-grained layer division of the vision encoder within our pipeline parallel strategy. Moreover,
we perform image tile load balancing across different data parallel ranks during the forward
and backward processes to alleviate the imbalance in the number of image tiles caused by the
dynamic resolution strategy. Our training process also incorporates tensor parallelism and
expert parallelism approaches to achieve the highest efficiency. Since some data batches have
only text data while others include image data, we introduce two different pipeline strategies

10



Table 3 | Comparison with state-of-the-art models on OCR-related multimodal benchmarks. :
activated parameters of MoE model.

Model #Params (LLM) #Params (VE) #Params (Activated) DocVQA  ChartQA  InfoVQA - TextVQA ~ OCRBench
(test) (test) (test) (val)
Closed Model
GPT-4V [69] - - - 87.2 78.1 75.1 78.0 645
GPT-4o0 [32] - - - 92.8 85.7 79.2 77.4 736
Claude 3.5 Sonnet [5] - - - 95.2 90.8 74.1 74.1 788
Gemini-1.5-Pro [81] - - - 93.1 87.2 80.1 78.7 754
Open-source Model (0.5B - 3B)
LLaVA-OV 0.5B [45] 0.5B 0.4B 0.9B 70.0 61.4 41.8 - -
InternVL2-1B [16] - - 0.9B 81.7 72.9 50.9 70.5 754
MM 1.5-1B [107] - - 1B 81.0 67.2 50.5 72.5 605
DeepSeek-VL2-Tiny 0.6B7 0.4B 1.0B" 88.9 81.0 66.1 80.7 809
MolmoE-1B [22] 1.2Bf 0.3B 1.5Bf 777 78.0 53.9 78.8
MiniCPM-V 2.0 [99] 2.4B 0.4B 2.8B 719 - - 74.1 605
InternVL2-2B [16] 1.9B 0.3B 2.2B 86.9 76.2 58.9 734 784
Qwen2-VL-2B [88] 1.5B 0.7B 2.2B 90.1 735 65.5 79.7 794
MM 1.5-3B [107] - - 3B 87.7 74.2 58.5 76.5 657
DeepSeek-VL2-Small 2.4B7 0.4B 2.8B7 92.3 84.5 75.8 83.4 834
Open-source Model (4B - 13B)
Phi-3.5-Vision [1] 3.8B 0.3B 41B 69.3 81.8 36.6 72.0 599
InternVL2-4B [16] 3.8B 0.3B 4.1B 89.2 81.5 67.0 74.4 788
Aria-MoE [46] 3.9B7 0.4B 4.3B7 9226 86.4 - 81.1 -
MM 1.5-7B [107] - - 7B 88.1 78.6 59.5 76.5 635
LLaVA-OV 7B [45] 7.6B 0.4B 8.0B 87.5 80.0 68.8 - -
Molmo-7B-O [22] 7.3B 0.3B 7.6B - 80.4 70.0 80.4 -
MiniCPM-V2.6 [99] 7.6B 0.4B 8.0B 90.8 824 - 80.1 852 (CoT)
InternVL2-8B [16] 7.7B 0.3B 8.0B 91.6 83.3 74.8 774 794
Qwen2-VL-7B [88] 7.6B 0.7B 8.3B 94.5 83.0 76.5 84.3 845
Pixtral-12B [3] 12.0B 0.4B 12.4B 90.7 81.8 (CoT) 50.8 75.7
DeepSeek-VL 7B [59] 6.9B 0.4B 7.3B - - - - 456
DeepSeek-VL2 4.1BF 0.4B 4.5BF 93.3 86.0 78.1 84.2 811

for different kinds of data and switch between these two strategies on demand. The training of
DeepSeek-VL2 was completed in 7/10/14 days using a cluster of 16/33/42 nodes, with each
node equipped with 8 NVIDIA A100 GPUs.

5. Evaluation

5.1. Multimodal Performance

Benchmarks We perform a holistic evaluation of DeepSeek-VL2 across a collection of com-
monly used benchmarks, including DocVQA [66], ChartQA [65], InfoVQA 2 [67], TextVQA [77],
RealWorldQA [95], OCRBench [57], AI2D [34], MMMU [105], MMStar [13], MathVista [60],
MME [26], MMBench, MMBench-V1.1 [58] and MMT-Bench [100]. These benchmarks span
diverse tasks from document understanding and chart interpretation to real-world problem solv-
ing, enabling comprehensive evaluation of our model’s capabilities. To evaluate the grounding
capability of our models, we test DeepSeek-VL2 on the RefCOCO, RefCOCO+ and RefCOCOg
benchmarks [33, 64].

2Given that InfoVQA contains images with extreme aspect ratios and excessively large images, we enlarge the
candidate resolutions as Cr = {(m-384,n-384) | m € N,n € IN,1 < m,n, mn < 18} when evaluating.
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Table 4 | Comparison with state-of-the-art models on general QA and math-related multimodal
benchmarks. ': activated parameters of MoE model. *: evaluated in a different setting.

Model #Params | MMStar AI2D MMMU MME MMBench MMBench MMBench-V1.1 MMT-Bench RealWorldQA MathVista
(Activated) (test) (val) (sum) (en test) (cn test) (testmini)
Closed Model
GPT-4V [69] - 56.0 89.4 63.1 1,927 81 80.2 80 64.3 61.4 58.1
GPT-40 [32] - 63.9 94.2 69.1 2,329 83.4 82.1 82.2 65.5 754 63.8
Claude 3.5 Sonnet [5] - 62.2 94.7 68.3 1,920 79.7 80.7 78.5 - 60.1 67.7
Gemini-1.5-Pro [81] - - 94.4 62.2 - - 64.5 70.4 63.9
Open-source Model (0.5B - 3B)

LLaVA-OV 0.5B [45] 0.9B 37.7 57.1 31.4 1,478 61.6 55.5 59.6 - 55.6 34.8
InternVL2-1B [16] 0.9B 45.7 64.1 35.4 1,794 65.4 60.7 61.6 495 50.3 37.7
MM 1.5-1B [107] 1B - 59.3 35.8 1,611 - - - - 53.3 372
DeepSeek-VL2-Tiny 1.0B* 459 71.6 40.7 1,915 783 69.2 68.3 53.2 64.2 53.6

MolmoE-1B [22] 15B - 86.4* 349 - - - - - 60.4 34
MiniCPM-V 2.0 [99] 2.8B - - 38.2 1,809 69.6 68.1 - - - 38.7
InternVL2-2B [16] 2.2B 49.8 74.1 36.3 1,877 73.2 70.9 69.6 50.4 57.3 46.3
Qwen2-VL-2B [88] 22B 48 74.4 411 1,872 74.9 73.5 72.2 54.5 62.9 47.8
MM 1.5-3B [107] 3B - 65.7 37.1 1,798 - - = N 56.9 444
DeepSeek-VL2-Small 2.8B" 57.0 80.0 48.0 2,123 82.3 80.3 79.3 62.9 65.4 60.7

Open-source Model (4B - 13B)
Phi-3.5-Vision [1] 41B 47.5 78.1 43 - 76 66.1 72.1 53.6 53.6 439
InternVL2-4B [16] 41B 54.3 78.9 479 2,060 78.6 739 75.8 55.7 60.7 58.6
Aria-MoE [46] 4.3B7 - - 54.9 - - - 66.1
MM 1.5-7B [107] 7B - 72.2 418 1,861 - - 62.5 47.6
LLaVA-OV 7B [45] 8.0B 81.4 48.8 1,998 80.8 - 66.3 63.2
Molmo-7B-O [22] 7.6B" - 90.7* 39.3 - - - - - 67.5 44.5
MiniCPM-V2.6 [99] 8.0B 57.5 821 49.8(CoT) 2,348 (CoT) 81.5 79.3 78.0 60.8 65.0 60.6
InternVL2-8B [16] 8.0B 61.5 83.8 51.8 2,210 81.7 81.2 79.4 60.0 64.4 58.3
Qwen2-VL-7B [88] 8.3B 60.7 83 54.1 2,327 83 80.5 80.7 63.7 70.1 58.2
Pixtral-12B [3] 12.4B - 52.5 (CoT) - - - - 65.4 58 (CoT)

DeepSeek-VL 7B [59] 7.3B - - 36.6 73.2 - - - - -

DeepSeek-VL2 4.5B7 61.3 814 51.1 2,253 83.1 79.6 79.2 63.6 68.4 62.8

Comparison with the state-of-the-arts On the multimodal understanding benchmarks, we
compare DeepSeek-VL2 with state-of-the-art models, including LLaVA-OV [45], InternVL2 [15],
DeepSeek-VL [59], Qwen2-VL [88], Phi-3.5-Vision [1], Molmo [22], Pixtral [3], MM1.5 [107] and
Aria-MOoE [46]. The results are reported in Table 3 and 4. Benefited from our MoE architecture,
DeepSeek-VL2 achieves similar or better performance with fewer activated parameters. On the
grounding benchmarks, we compare DeepSeek-VL2 with Groudning DINO [56], UNINEXT [52],
ONE-PEACE [87], mPLUG-2 [97], Florence-2 [96], InternVL2 [16], Shikra [11], TextHawk2 [103],
Ferret-v2 [108], MM1.5 [107] and Qwen2 [88]. Our models outperforms the other VLMs at
similar scales.

5.2. Qualitative Study

In this section, we demonstrate different capabilities of DeepSeek-VL2, ranging from general
question answering to visual storytelling and visual grounding.

General visual question answering. Benefited from our new VL pretraining dataset and
diverse SFT data. DeepSeek-VL2 demonstrated significantly improved ability on general visual
question answering, as shown in Figure 4. Overall, this model excels at dense image description
and it is able to recognize common landmarks, general visual knowledge, and rich-texts in both
English and Chinese. It also performs favorably on chart understanding with accurate attributes
recognition. Furthermore, we show the improved meme understanding of DeepSeek-VL2 in
Figure 5, where it can describe the correct context and explain the humor with meaningful
cultural background.
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« An expansive coastal landscape dominated by towering limestone stacks rising dramatically from turquoise waters of the
ocean. These natural formations are part of The Twelve Apostles geological formation located on the Great Ocean Road in
Victoria, Australia. In the foreground stands a prominent stack closest to the viewer's perspective; it is flanked by smaller
stacks extending into the distance towards the horizon where they gradually diminish due to atmospheric haze or mist
shrouding them partially. To the right side of the frame lies a sandy beach that curves gently around as if embracing the rugged
cliffs which form the backdrop for this scene. The sky above appears overcast yet diffused sunlight illuminates parts of the cliff
faces casting subtle shadows across some areas while highlighting others, adding depth and texture to the overall
composition. Small waves break against both the base of the stacks and nearer shoreline creating white foam patterns
contrasting sharply with the deep blue-green sea water below. Vegetation can also be seen at various points including atop
certain stacks providing hints of greenery amidst predominantly earth-toned rock structures. This serene but powerful
seascape captures nature’s grandeur through its interplay between landforms, water bodies, light conditions, and vegetation
all harmoniously coexisting within the same visual space.

Describe this scene in detail.

Landmark Recog

& Jzillaal‘%l?“”T AL RR, AR LT R— L
. ’ﬁﬁliﬁﬁﬂ*}z\ N — AR ERE ‘ LR
o XPREREIESRPEERER, jcﬁ SRAFME

Ho
R AT RAT E’J%A%%%E . BIa L T "i%s‘fﬂ‘lz
!rﬂ IR NMRIXAEARZ S AP A IR AR F 7

=X, EWEFFIEE%%E’L Az — AEHEEWHLSMEER

ﬁﬁﬁi?ﬂﬁ?@iﬂi‘éﬁﬁﬁ%%i%miﬁﬁc

Btk [ TR A T B 2 R E AT, B B B S SR TRXRWE?

BAZRHMTT.

(w4 The cake in the image is themed around the iconic cartoon series & CBALY

"Tom and Jerry." This series, created by William Hanna and Joseph “
Barbera, first aired in 1940 and became one of the most famous 2 AR TR,
animated shows of all time. The story revolves around the never- ’L\WV\ RER

ending chase between the cunning Tom the Cat and Jerry the Mouse.
Each episode typically features Tom making various plans to catch
Jerry, only to be outsmarted or thwarted by Jerry's cleverness and ;L%U%EW%UM
cunning. The dynamic duo is a symbol of constant rivalry and humor, FOE R T
and their interactions have been a part of popular culture for decades.
This cake captures the essence of their playful and chaotic
relationship through its design and decoration.

Can you introduce the
background story of this cake?

Chart Understandin;

Comparison of Multilingual Datasets
(ar, fr, ru, th, tr, zh)

~

FineWeb 2 (Ours)
CulturaX

HPLT-2

CC-100
CommonCrawl
:‘;CLAT What's written on the large black board.

IS

Average Normalized Score

5 10 15 20 25 30
Training tokens (billions)
@ Serving Soul Since Twenty Twelve

Can you explain this chart to me?

@ The chart shows a comparison of multilingual datasets based on the average normalized score across six languages:
Arabic (ar), French (fr), Russian (ru), Thai (th), Turkish (tr), and Chinese (zh). The x-axis represents the number of training
tokens in billions, while the y-axis shows the average normalized score, which is a measure of model performance.

##4 Key Points:

1. **Datasets Compared**:
FineWeb 2 (Ours)
- CulturaX
-HPLT-2
-CC-100
-CommonCrawl
-mC4

2 +*Trend Anaysist: AR ARE

- FineWeb 2 consistently achieves the highest average normalized score, indicating superior performance compared to
other datasets across the given range of training tokens. & BERRFHES5A0EAEXNRSMRS.

- The other datasets show varying levels of performance but tend to converge towards a similar score as the number of IR SR R IR 1 EiE
training tokens increases. (West Lake Fish Cake) , —Fh [ 75340

3. **Performance Insights**: E“@j}}ﬂﬂ’]ﬁuun Eaﬂa’]r%kﬁmﬂ

- Initially, FineWeb 2 has a significant advantage over other datasets, which highlights the effectiveness of the data

s

collected in this dataset. PR S I, KRR "#ﬁﬁ\ﬁ K
- As training tokens increase, the performance gap between datasets narrows, suggesting diminishing returns in terms of HAFe 2R e NRami Lihng
dataset size. WHAE—IE, ?EE?&M%%E’\]%EEM\E’JMD

- FineWeb 2 demonstrates robustness, maintaining a lead over the other datasets throughout the training process.

Hd,
EilEERMMN—EERXE FTEEM

i nterpretation: Bafife, ZRE. B REEREE
The chart underscores the importance of dataset quality and size in achieving high model performance in multilingual Eﬁﬁﬁﬁﬂj ° ﬂ“j‘@_]_%%ﬁ ﬂﬁ”% PONE] ifﬂl
tasks. The superior results of FineWeb 2 indicate its potential to enhance language model training for various applications BRMKG X— 1§iﬁ§§ SE T EHN
across multiple languages. @,

Figure 4 | General question answering capability of DeepSeek-VL2. Our model has multi-
faceted capabilities, including recognition of landmarks, image-based poetry composition,
answering questions about general knowledge, understanding charts, recognizing text, and
more.
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Meme underst: g

LIFE OF A PhD student

@& Theimage humorously depicts the contrasting thoughts of a PhD student. On the left, the student is
working at a desk, surrounded by books and papers, dreaming of a relaxing beach vacation. On the
right, the studentis actually at the beach, but their mind is still consumed by thoughts of work,
represented by stacks of papers and a laptop. This illustrates the common experience of PhD students
who often find it difficult to fully disconnect from their research, even when they are physically away
from their work environment.

What does this image imply?

& This image depicts a humorous situation involving a young child and a cake. The child, appearing
determined and mischievous, is depicted biting into a large chocolate cake on a table. The text at the
top of the image reads: “Mom told me not to touch it.”

### Analysis and Meaning:

1. **Disobedience theme**: The text implies that the child has intentionally ignored the instruction or
warning given by their mom. This reflects the common tendency of children to follow rules reluctantly
and test boundaries when told otherwise.

2. **Humor in contrast**: The exaggerated act of biting the cake makes the situation absurd, adding to
the humor. The over-the-top behavior contrasts with the seemingly simple instruction, creating an
unexpected and funny outcome.

3. **Relatable scenario**: This image humorously captures a widely understood, everyday behavior—
children wanting things they are told they cannot have, leading to playful and sometimes rebellious
actions.

4. **Vlisual cue**: The child's action of taking a bite adds a dynamic and engaging element to the
humor, amplifying the sense of mischief and delight in the moment.

Explain this meme to me.

In short, this image humorously captures the playful defiance of childhood, using the visual of a child
taking a bite of an untouchable cake to amplify the humor and relatability.
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Figure 5 | Meme understanding capability of DeepSeek-VL2. Our model can understand the
humor in memes and provide explanations.
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Multi-image conversation

I am having lunch now and | like sweet things. What would be a good drink to pair with my meal?

&' A good drink to pair with your meal might be the milkshake from image 3. The sweetness of the milkshake can
complement the flavors of your spaghetti dish.

BERS AL R —ESRIS?

@ HART XADEEEATAS M FAREDS, TUREMAREEEER. RTUSRRERE MEKENER.
#H T NEXRIEMBR
iR

-\B1E]
-RBE 2558
- EH AR
-FE AR
-BEE

- BRESERKE (1)
i B

1~**ﬁfgﬁ*j: *k

-REEIBRRETIR, BAEKE0pEEMK, BHEM.

-BAE NER, VIR, ERFIE, VIR,

2. %K **

-%ﬁlﬁfg)\%%ql, MNEKRIIER, BEK3neh, ERFA HHER.
Rl %= SR

-%%gg&'\%ﬁiﬂi, BN\BERE, REMAREZFNE.

4, *xffi x*

-EINEKENENS, BOHS, MARNE. &h. . & SAAEERK ZREESLH, BEIRRE.
5. **fNABC3E. **

@%‘%ﬁqﬂ DINERZE MIEK, SRER2004h, EEIRERA.

6. **i}ﬁu Tk

-EREIMAGRESRGTE, RIBDADKRAEK, S, BTHRRER.

REHAE MEXEMER, WEFE, 5700, FREREREHNTEAORNMAE.

Figure 6 | Multi-image conversation capability of DeepSeek-VL2. Our model can understand
the relationships between multiple images and do some reasoning based on them.
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Visual Story Writing

Can you help me write a short travel story based on these photos?

@ Title: "AVoyage Through Time and Light”

The wait was a symphony of anticipation, each note a silent prayer to the gods of travel. | sat in the Paris Airport terminal, the word
"BIENVENUE" etched in bold, inviting letters above me. The Eiffel Tower symbol floated serenely, a promise of what was to come. |
reached into my bag, feeling the cool metal of my suitcase handle, and bit my lip, trying not to sink further into the comfort of the
grey seats. The ceiling lights buzzed softly, casting a sterile glow that neither cheered nor soothed my nerves.

| boarded the plane, the roar of engines a symphony of promise. As we soared above the clouds, the world below became a
patchwork of life—houses, roads, rivers—each a story waiting to be told. Then, the familiar spire of the Arc de Triomphe appeared,
its grandeur a testament to human ambition. | watched, entranced, as the plane descended, the iconic archway a beacon of hope
and history. The sky, a canvas of blue, welcomed us with a smile.

Finally, we landed. The terminal buzzed with life, a cacophony of languages and laughter. | walked through the glass doors, the world
outside a blur of green and grey. | found myself in a room, the Mona Lisa's eyes staring back at me, a mystery untouched by time. The
golden frame shimmered, and | felt a connection, a fleeting moment of understanding. The reflection in the glass showed me a
different perspective, a reminder that beauty is in the eye of the beholder.

| left the room, the Mona Lisa's enigmatic smile still etched in my mind. The journey had been a dance of light and shadow, a
symphony of moments that painted a picture of a city where every corner held a story. As | stepped outside, the Parisian night
embraced me, a welcome that felt both ancient and new, just like the city itself.

LR F i — A RER

& (ERMIFE)

LHMRRNALASPKE STRBRREZAAANECERNEE, MREMISAETRREBTAYR, HHRIZNPRLHTTE—MEE, £
REEMTE, REXRSRAS, oL AZTHTHfF. g, S@ER— MR EANRE.

TERER, EREEERT —AMBOBRRIEE. PRBAGLENE, BWEAXTRGEEZMAT. EREEZBEMELR, A, EED
H—EERLT, REMOTRRERNHEEEN.

XA, —AEASENRHIERER. BHFHRAIIRGEESENLE, ORERIETENEE. BREFERLE XA EEBRRE
F-0E, RERENBLA R,

EREEFERS, RERIFRE T —FRRESEEICTNET ., 5 AN ZERX T EEEIMTMH, BIREARBAERNT, BiE, /TRl
—REENNE. ERAERE—RANBORBL, il X2RERNHERE.

LEBELAER, ZREETERENIERDE T LS. RS, CPRBTHESHE. IMER, FREKETRE ERATRONNE.

Figure 7 | Visual storytelling capability of DeepSeek-VL2. Our model can accept multiple
images as input and narrate a story in either Chinese or English based on the images.
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Table 5 | Comparison with state-of-the-art models on visual grounding benchmarks. Our
models of different sizes have all achieved the best results among MLLMs with similar sizes.

Model RefCOCO RefCOCO+ RefCOCOg
val testA testB val testA testB val test
Vision Model
Grounding DINO-Tiny [56] 89.2 91.9 86.0 81.1 874 74.7 85.2 84.9
Grounding DINO-Largey [56] 90.6 93.2 88.2 82.8 89.0 75.9 86.1 87.0
UNINEXT-H [52] 92.6 94.3 91.5 85.2 89.6 79.8 88.7 89.4
VLM + Task-Specific Fine-Tuning
ONE-PEACE [87] 92.6 94.2 89.3 88.8 922 83.2 89.2 89.3
mPLUG-2 [97] 90.1 92.8 86.1 - - 86.1 84.7 85.1
Florence-2-B [96] 92.6 94.8 91.5 86.8 91.7 822 89.8 822
Florence-2-L [96] 93.4 95.3 92.0 88.3 929 83.6 91.2 91.7
Open-source VLM (0.5B - 3B)
InternVL2-1B [16] 83.6 88.7 79.8 ‘ 76.0 83.6 67.7 80.2 79.9
DeepSeek-VL2-Tiny 84.7 87.8 78.4 75.9 83.9 67.4 73.8 83.9
InternVL2-2B [16] 82.3 88.2 759 ‘ 73.5 82.8 63.3 77.6 78.3
DeepSeek-VL2-Small 93.9 95.3 91.3 89.4 929 84.8 92.6 92.6
Open-source VLM (4B - 9B)
Shikra-7B [11] 87.0 90.6 80.2 81.6 874 72.1 82.3 822
TextHawk2-7B [103] 91.9 93.0 87.6 86.2 90.0 80.4 88.2 88.1
Ferret-v2-7B [108] 92.8 94.7 88.7 87.4 92.8 79.3 89.4 89.3
InternVL2-8B [16] 87.1 91.1 80.7 79.8 87.9 71.4 82.7 82.7
MM1.5-7B [107] - 92.5 86.7 - 88.7 77.8 - 87.1
Qwen2-VL-7B [88] 91.7 93.6 87.3 85.8 90.5 79.5 87.3 87.8
DeepSeek-VL2 95.1 96.7 92.7 91.2 94.9 87.4 92.8 92.9

Multi-image conversation. DeepSeek-VL2 demonstrated improved ability on multi-image
conversation, as shown in Figure 6. Our model can analyze the associations and differences
among multiple images, while also enabling simple reasoning by integrating the content of
several images. For example, it can think about how to prepare a dish based on images of certain
ingredients.

Visual storytelling. In Figure 7, we show DeepSeek-VL2 is able to write a creative story given
a few images. The story writing is backed by its strong general visual capabilities such as
landmark recognition and OCR, as highlight in green texts. In addition, since the story writing
ability is originally from the text-only DeepSeek Chat model, which is already aligned with good
safety, we do not observe significant harmful and NSFW output from DeepSeek-VL2 during our
internal testing. However, it is worth noting that creative storytelling in real-world scenarios
demands more diverse genres (e.g., horror, comedy, action) and varied plot types (e.g., happy
or tragic endings), which may inherently conflict with the safety requirements in LLM/VLM
research. We aim to explore solutions to broaden the scope of storytelling while considering
these challenges.

Visual grounding. Visual grounding is a new ability we bring to DeepSeek-VL2. In Figure 8,
we show the general grounding ability of DeepSeek-VL2. Interestingly, although the majority
of images in our training set come from natural scenes, and the referring expressions are
object category names or specific descriptions of objects, we find that the model is capable of
generalizing to other scenarios (such as memes and animes), and has the ability to recognize
certain celebrities and abstract concepts. Furthermore, we show DeepSeek-VL2 has in-context
visual grounding ability in Figure 10. Given the first image, where an object is referred by the
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Figure 8 | Visual grounding ability of DeepSeek-VL2. Our model can locate objects based on
their category names, descriptions, or some abstract concepts.
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Grounded Conversation

<|grounding|>If you feel hot, what will
you do?

To cool down, you can use
the fan

which is sitting on the desk.

<|grounding|> I'm a fig lover, which one
would you recommend?

(w4 If you're a fig lover, you should
definitely try the green
cake
. It's a matcha fig cake,

which is a new addition to their menu.

| m—
- )
E =

<|grounding|>How to maintain world peace?

@ It'sabigquestion, but one way could
be by not having destructive weapons
like the big
bomb

ondisplayin

<|grounding|>l want to throw out
the trash now, what should | do?

(w4 Well, you'll want to use the
trashcan

that's
positioned on the sidewalk.

museums.

Figure 9 | Grounded conversation with DeepSeek-VL2. Our model can perform reasoning on
images while identifying the locations of relevant objects, thereby enabling the possibility of
interacting with the real world.

In-context Visual Grounding

<|grounding|>In the firstimage, an object within the red rectangle is
marked. Locate the object of the same category in the second image.

<|grounding|> Find the most frequently appearing fruit from the first
image in the second image.

SHRE BRIV WE AR EMEM SRR REER

a anann

?\@Q@

<|grounding|>According to the first image, which dish contains that
ingredient in the second image?

ALERFAREAS MY

Figure 10 | In-context visual grounding with DeepSeek-VL2. Given one image, either with or
without visual prompts, DeepSeek-VL2 is able to find relevant objects in another image.
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visual prompt, the model is able to locate the object of the same category in the second image.
We also observe that the model has exhibited emergent abilities. Given an image and textual
descriptions, the model can combine the information from the image and the text to identify the
corresponding object in a second image. Examples are listed in the second and the third rows in
Figure 10.

Grounding conversation. With the special token <|grounding|>, DeepSeek-VL2 can unleash
its ability of grounded conversation, where it can refer to the key objects with accurate locations
in its response, as demonstrated in Figure 9. This enables the model to interact better with the
real world, thereby creating opportunities to play a greater role in fields such as embodied Al
and computer/phone agents.

6. Conclusion

In this technical report, we introduce DeepSeek-VL2, an enhanced version of MoE-based Vision-
Language Models, available in scales of 3B, 16B, and 27B parameters in total, with corresponding
activated parameters of 1.0B, 2.8B, and 4.5B. This configuration facilitates efficient computational
consumption during both training and inference stages. Notably, our 3B, 16B and 27B models
can be deployed on a single GPU with 10 GB, 40GB and 80GB memory respectively. We employ
a dynamic tiling vision encoding strategy to efficiently process high-resolution images with
various aspect ratios. By making codes and pre-trained models publicly available, we aim to
stimulate further advancements and applications at the intersection of vision and language.

Limitations and Future Work While DeepSeek-VL2 demonstrates strong capabilities across
various tasks, there are several areas for future improvements. Currently, DeepSeek-VL2’s
context window only allows for a few images per chat session. We plan to extend the context
window in our next version to enable richer multi-image interactions. Moreover, like other
current VLMs, the model occasionally faces challenges with blurry images or unseen objects,
presenting opportunities for improved robustness in future versions. Finally, while DeepSeek-
VL2 excels in visual perception and recognition tasks, we aim to strengthen its reasoning
capabilities. These identified areas guide our ongoing research directions as we continue to
advance the model’s capabilities.
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