# Copyright (c) 2023-2024 DeepSeek. # # Permission is hereby granted, free of charge, to any person obtaining a copy of # this software and associated documentation files (the "Software"), to deal in # the Software without restriction, including without limitation the rights to # use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of # the Software, and to permit persons to whom the Software is furnished to do so, # subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS # FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR # COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER # IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN # CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. from threading import Thread from typing import List import torch import transformers from joblib.externals.cloudpickle import instance from transformers import ( AutoModelForCausalLM, StoppingCriteria, StoppingCriteriaList, TextIteratorStreamer, ) from deepseek_vl.models import DeepseekVLV2Processor, DeepseekVLV2ForCausalLM from deepseek_vl.models.conversation import Conversation def load_model(model_path, dtype=torch.bfloat16): vl_chat_processor = DeepseekVLV2Processor.from_pretrained(model_path) tokenizer = vl_chat_processor.tokenizer vl_gpt: DeepseekVLV2ForCausalLM = AutoModelForCausalLM.from_pretrained( model_path, trust_remote_code=True, torch_dtype=dtype ) vl_gpt = vl_gpt.cuda().eval() return tokenizer, vl_gpt, vl_chat_processor def convert_conversation_to_prompts(conversation: Conversation): conv_prompts = [] pil_images = [] messages = conversation.messages for i in range(0, len(messages), 2): if isinstance(messages[i][1], tuple): text, images = messages[i][1] else: text, images = messages[i][1], [] pil_images.extend(images) prompt = { "role": messages[i][0], "content": text, } response = {"role": messages[i + 1][0], "content": messages[i + 1][1]} conv_prompts.extend([prompt, response]) return conv_prompts, pil_images class StoppingCriteriaSub(StoppingCriteria): def __init__(self, stops=[], encounters=1): super().__init__() self.stops = [stop.to("cuda") for stop in stops] def __call__( self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs ): for stop in self.stops: if input_ids.shape[-1] < len(stop): continue if torch.all((stop == input_ids[0][-len(stop) :])).item(): return True return False @torch.inference_mode() def deepseek_generate( conv_prompts: list, pil_images: list, vl_gpt: torch.nn.Module, vl_chat_processor: DeepseekVLV2Processor, tokenizer: transformers.PreTrainedTokenizer, stop_words: list, max_length: int = 256, temperature: float = 1.0, top_p: float = 1.0, repetition_penalty=1.1, ): prepare_inputs = vl_chat_processor.__call__( conversations=conv_prompts, images=pil_images, inference_mode=True, force_batchify=True, system_prompt="" ).to(vl_gpt.device) return generate( vl_gpt, tokenizer, prepare_inputs, max_length, temperature, repetition_penalty, top_p, stop_words, ) @torch.inference_mode() def generate( vl_gpt, tokenizer, prepare_inputs, max_gen_len: int = 256, temperature: float = 0, repetition_penalty=1.1, top_p: float = 0.95, stop_words: List[str] = [], ): """Stream the text output from the multimodality model with prompt and image inputs.""" inputs_embeds = vl_gpt.prepare_inputs_embeds(**prepare_inputs) streamer = TextIteratorStreamer(tokenizer) stop_words_ids = [ torch.tensor(tokenizer.encode(stop_word)) for stop_word in stop_words ] stopping_criteria = StoppingCriteriaList( [StoppingCriteriaSub(stops=stop_words_ids)] ) generation_config = dict( inputs_embeds=inputs_embeds, attention_mask=prepare_inputs.attention_mask, pad_token_id=tokenizer.eos_token_id, bos_token_id=tokenizer.bos_token_id, eos_token_id=tokenizer.eos_token_id, max_new_tokens=max_gen_len, do_sample=True, use_cache=True, streamer=streamer, stopping_criteria=stopping_criteria, ) if temperature > 0: generation_config.update( { "do_sample": True, "top_p": top_p, "temperature": temperature, "repetition_penalty": repetition_penalty, } ) else: generation_config["do_sample"] = False thread = Thread(target=vl_gpt.generate, kwargs=generation_config) thread.start() yield from streamer