mirror of
https://github.com/deepseek-ai/DeepSeek-VL2.git
synced 2025-02-23 06:09:04 -05:00
add a client utility that can script questions to the web demo
This commit is contained in:
parent
5c818a06a4
commit
db6c917643
145
client.py
Executable file
145
client.py
Executable file
@ -0,0 +1,145 @@
|
||||
import json
|
||||
import time
|
||||
import sys
|
||||
import os
|
||||
from gradio_client import Client, handle_file
|
||||
|
||||
# Replace with the actual server URL if different
|
||||
ip = "127.0.0.1"
|
||||
port = "8080"
|
||||
|
||||
# Define the user prompt (caption)
|
||||
user_prompt = "Thoroughly and carefully describe this image."
|
||||
|
||||
files = []
|
||||
output_file = "output.json"
|
||||
|
||||
# Hyperparameters
|
||||
temperature = 0.6
|
||||
top_k = 50
|
||||
top_p = 0.9
|
||||
max_tokens = 100
|
||||
|
||||
startAt = 0
|
||||
|
||||
argumentStart = 1
|
||||
if len(sys.argv) > 1:
|
||||
for i in range(0, len(sys.argv)):
|
||||
if sys.argv[i] == "--ip":
|
||||
ip = sys.argv[i + 1]
|
||||
argumentStart += 2
|
||||
if sys.argv[i] == "--directory":
|
||||
directory = sys.argv[i + 1]
|
||||
argumentStart += 2
|
||||
# Populate files with image (.jpg, .png) contents of directory
|
||||
if os.path.isdir(directory):
|
||||
directoryList = os.listdir(directory)
|
||||
directoryList.sort()
|
||||
for file in directoryList:
|
||||
if file.lower().endswith(('.jpg', '.png', '.jpeg', '.txt')):
|
||||
files.append(os.path.join(directory, file))
|
||||
else:
|
||||
print(f"Error: Directory '{directory}' does not exist.")
|
||||
sys.exit(1)
|
||||
elif sys.argv[i] == "--start":
|
||||
startAt = int(sys.argv[i + 1])
|
||||
argumentStart += 2
|
||||
elif sys.argv[i] == "--port":
|
||||
port = sys.argv[i + 1]
|
||||
argumentStart += 2
|
||||
elif sys.argv[i] == "--prompt":
|
||||
user_prompt = sys.argv[i + 1]
|
||||
argumentStart += 2
|
||||
elif sys.argv[i] == "--temperature":
|
||||
temperature = float(sys.argv[i + 1])
|
||||
argumentStart += 2
|
||||
elif sys.argv[i] == "--top_k":
|
||||
top_k = int(sys.argv[i + 1])
|
||||
argumentStart += 2
|
||||
elif sys.argv[i] == "--top_p":
|
||||
top_p = float(sys.argv[i + 1])
|
||||
argumentStart += 2
|
||||
elif sys.argv[i] == "--max_tokens":
|
||||
max_tokens = int(sys.argv[i + 1])
|
||||
argumentStart += 2
|
||||
elif sys.argv[i] in ("--output", "-o"):
|
||||
output_file = sys.argv[i + 1]
|
||||
argumentStart += 2
|
||||
|
||||
# Initialize the Gradio client with the server URL
|
||||
client = Client(f"http://{ip}:{port}")
|
||||
|
||||
results = {"prompt": user_prompt}
|
||||
|
||||
for i in range(argumentStart, len(sys.argv)):
|
||||
files.append(sys.argv[i])
|
||||
|
||||
# Make sure the list is sorted
|
||||
files.sort()
|
||||
|
||||
# Possibly start at a specific index
|
||||
for i in range(startAt, len(files)):
|
||||
# Grab the next image path
|
||||
image_path = files[i]
|
||||
|
||||
# Count start time
|
||||
start = time.time()
|
||||
|
||||
# Make query to VLLM
|
||||
try:
|
||||
imageFile = None
|
||||
this_user_prompt = user_prompt
|
||||
if image_path.endswith('.txt'):
|
||||
with open(image_path, 'r') as txt_file:
|
||||
this_user_prompt = txt_file.read().strip()
|
||||
else:
|
||||
imageFile = handle_file(image_path)
|
||||
|
||||
# Send the image file path and the prompt to the Gradio app for processing
|
||||
result = client.predict(
|
||||
input_images=[imageFile], # Provide the file path directly
|
||||
input_text=this_user_prompt, # Adapted prompt parameter
|
||||
api_name="/transfer_input"
|
||||
)
|
||||
|
||||
result = client.predict(
|
||||
chatbot=[],
|
||||
temperature=temperature,
|
||||
#top_k=top_k,
|
||||
top_p=top_p,
|
||||
max_length_tokens=max_tokens, # Adapted max_tokens parameter
|
||||
repetition_penalty=1.1,
|
||||
max_context_length_tokens=4096,
|
||||
model_select_dropdown="deepseek-ai/deepseek-vl2-tiny",
|
||||
api_name="/predict"
|
||||
)
|
||||
|
||||
|
||||
|
||||
except Exception as e:
|
||||
print(f"Failed to complete job at index {i}: {e}")
|
||||
output_file = f"partial_until_{i}_{output_file}"
|
||||
break
|
||||
|
||||
# Calculate elapsed time
|
||||
seconds = time.time() - start
|
||||
remaining = (len(files) - i) * seconds
|
||||
hz = 1 / (seconds + 0.0001)
|
||||
|
||||
# Output the result
|
||||
print("result[0][0][1] ",result[0][0][1])
|
||||
question = this_user_prompt #Don't try to recover it from the list..
|
||||
response = result[0][0][1]
|
||||
|
||||
# Print on screen
|
||||
print(f"Processing {1 + i}/{len(files)} | {hz:.2f} Hz / remaining {remaining / 60:.2f} minutes")
|
||||
print(f"Image: {image_path}\nResponse: {response}")
|
||||
|
||||
# Store each path as the key pointing to each description
|
||||
results[image_path] = response
|
||||
|
||||
# Save results to JSON
|
||||
print(f"\n\n\nStoring results in JSON file {output_file}")
|
||||
with open(output_file, "w") as outfile:
|
||||
json.dump(results, outfile, indent=4)
|
||||
|
Loading…
Reference in New Issue
Block a user