mirror of
https://github.com/deepseek-ai/DeepSeek-VL2.git
synced 2025-02-22 13:49:00 -05:00
replicate
This commit is contained in:
parent
a8341f36dd
commit
1c102ea1de
@ -43,6 +43,9 @@
|
||||
<a href="LICENSE-MODEL">
|
||||
<img alt="Model License" src="https://img.shields.io/badge/Model_License-Model_Agreement-f5de53?&color=f5de53">
|
||||
</a>
|
||||
<a href="https://replicate.com/chenxwh/deepseek-vl2" target="_blank">
|
||||
<img src=https://replicate.com/chenxwh/deepseek-vl2/badge/>
|
||||
</a>
|
||||
</div>
|
||||
|
||||
|
||||
|
36
cog.yaml
Normal file
36
cog.yaml
Normal file
@ -0,0 +1,36 @@
|
||||
# Configuration for Cog ⚙️
|
||||
# Reference: https://cog.run/yaml
|
||||
|
||||
build:
|
||||
# set to true if your model requires a GPU
|
||||
gpu: true
|
||||
|
||||
# a list of ubuntu apt packages to install
|
||||
system_packages:
|
||||
- "libgl1-mesa-glx"
|
||||
- "libglib2.0-0"
|
||||
|
||||
# python version in the form '3.11' or '3.11.4'
|
||||
python_version: "3.11"
|
||||
|
||||
# a list of packages in the format <package-name>==<version>
|
||||
python_packages:
|
||||
- torch==2.4.0
|
||||
- transformers<4.42
|
||||
- numpy
|
||||
- gradio==3.48.0
|
||||
- timm>=0.9.16
|
||||
- accelerate
|
||||
- sentencepiece
|
||||
- attrdict
|
||||
- einops
|
||||
- xformers
|
||||
- ipython
|
||||
- joblib
|
||||
- mdtex2html
|
||||
|
||||
# commands run after the environment is setup
|
||||
run:
|
||||
- pip install -U flash-attn --no-build-isolation
|
||||
- curl -o /usr/local/bin/pget -L "https://github.com/replicate/pget/releases/download/v0.6.0/pget_linux_x86_64" && chmod +x /usr/local/bin/pget
|
||||
predict: "predict.py:Predictor"
|
148
predict.py
Normal file
148
predict.py
Normal file
@ -0,0 +1,148 @@
|
||||
# Prediction interface for Cog ⚙️
|
||||
# https://cog.run/python
|
||||
|
||||
import os
|
||||
import subprocess
|
||||
import time
|
||||
from typing import Optional
|
||||
from cog import BasePredictor, Input, Path, BaseModel
|
||||
import torch
|
||||
from PIL import Image
|
||||
from deepseek_vl2.serve.app_modules.utils import parse_ref_bbox
|
||||
from deepseek_vl2.serve.inference import (
|
||||
convert_conversation_to_prompts,
|
||||
load_model,
|
||||
)
|
||||
from web_demo import generate_prompt_with_history
|
||||
|
||||
|
||||
MODEL_CACHE = "model_cache"
|
||||
MODEL_URL = f"https://weights.replicate.delivery/default/deepseek-ai/deepseek-vl2-small/model_cache.tar"
|
||||
|
||||
|
||||
def download_weights(url, dest):
|
||||
start = time.time()
|
||||
print("downloading url: ", url)
|
||||
print("downloading to: ", dest)
|
||||
subprocess.check_call(["pget", "-x", url, dest], close_fds=False)
|
||||
print("downloading took: ", time.time() - start)
|
||||
|
||||
|
||||
class ModelOutput(BaseModel):
|
||||
img_out: Optional[Path]
|
||||
text_out: str
|
||||
|
||||
|
||||
class Predictor(BasePredictor):
|
||||
def setup(self) -> None:
|
||||
"""Load the model into memory to make running multiple predictions efficient"""
|
||||
|
||||
if not os.path.exists(MODEL_CACHE):
|
||||
print("downloading")
|
||||
download_weights(MODEL_URL, MODEL_CACHE)
|
||||
|
||||
self.dtype = torch.bfloat16
|
||||
self.tokenizer, self.vl_gpt, self.vl_chat_processor = load_model(
|
||||
f"{MODEL_CACHE}/deepseek-ai/deepseek-vl2-small", dtype=self.dtype
|
||||
)
|
||||
|
||||
def predict(
|
||||
self,
|
||||
text: str = Input(
|
||||
description="Input text.",
|
||||
default="Describe this image.",
|
||||
),
|
||||
image1: Path = Input(description="First image"),
|
||||
image2: Path = Input(
|
||||
description="Optional, second image for multiple images image2text",
|
||||
default=None,
|
||||
),
|
||||
image3: Path = Input(
|
||||
description="Optional, third image for multiple images image2text",
|
||||
default=None,
|
||||
),
|
||||
max_new_tokens: int = Input(
|
||||
description="The maximum numbers of tokens to generate",
|
||||
le=4096,
|
||||
ge=0,
|
||||
default=2048,
|
||||
),
|
||||
temperature: float = Input(
|
||||
description="The value used to modulate the probabilities of the next token. Set the temperature to 0 for deterministic generation",
|
||||
default=0.1,
|
||||
),
|
||||
top_p: float = Input(
|
||||
description="If set to float < 1, only the smallest set of most probable tokens with probabilities that add up to top_p or higher are kept for generation.",
|
||||
default=0.9,
|
||||
),
|
||||
repetition_penalty: float = Input(
|
||||
description="Repetition penalty", le=2, ge=0, default=1.1
|
||||
),
|
||||
) -> ModelOutput:
|
||||
"""Run a single prediction on the model"""
|
||||
|
||||
pil_images = [
|
||||
Image.open(str(img)).convert("RGB")
|
||||
for img in [image1, image2, image3]
|
||||
if img
|
||||
]
|
||||
|
||||
conversation = generate_prompt_with_history(
|
||||
text,
|
||||
pil_images,
|
||||
None,
|
||||
self.vl_chat_processor,
|
||||
self.tokenizer,
|
||||
max_length=4096,
|
||||
)
|
||||
|
||||
all_conv, _ = convert_conversation_to_prompts(conversation)
|
||||
print(all_conv)
|
||||
|
||||
prepare_inputs = self.vl_chat_processor(
|
||||
conversations=all_conv,
|
||||
images=pil_images,
|
||||
force_batchify=True,
|
||||
).to(self.vl_gpt.device, dtype=self.dtype)
|
||||
|
||||
with torch.no_grad():
|
||||
inputs_embeds, past_key_values = self.vl_gpt.incremental_prefilling(
|
||||
input_ids=prepare_inputs.input_ids,
|
||||
images=prepare_inputs.images,
|
||||
images_seq_mask=prepare_inputs.images_seq_mask,
|
||||
images_spatial_crop=prepare_inputs.images_spatial_crop,
|
||||
attention_mask=prepare_inputs.attention_mask,
|
||||
)
|
||||
|
||||
outputs = self.vl_gpt.generate(
|
||||
inputs_embeds=inputs_embeds,
|
||||
input_ids=prepare_inputs.input_ids,
|
||||
images=prepare_inputs.images,
|
||||
images_seq_mask=prepare_inputs.images_seq_mask,
|
||||
images_spatial_crop=prepare_inputs.images_spatial_crop,
|
||||
attention_mask=prepare_inputs.attention_mask,
|
||||
past_key_values=past_key_values,
|
||||
pad_token_id=self.tokenizer.eos_token_id,
|
||||
bos_token_id=self.tokenizer.bos_token_id,
|
||||
eos_token_id=self.tokenizer.eos_token_id,
|
||||
max_new_tokens=max_new_tokens,
|
||||
use_cache=True,
|
||||
do_sample=temperature > 0,
|
||||
temperature=temperature,
|
||||
top_p=top_p,
|
||||
repetition_penalty=repetition_penalty,
|
||||
)
|
||||
|
||||
answer = self.tokenizer.decode(
|
||||
outputs[0][len(prepare_inputs.input_ids[0]) :].cpu().tolist(),
|
||||
skip_special_tokens=False,
|
||||
)
|
||||
vg_image = parse_ref_bbox(answer, image=pil_images[-1])
|
||||
|
||||
out_img = "out.png"
|
||||
if vg_image is not None:
|
||||
vg_image.save(out_img, format="JPEG", quality=85)
|
||||
|
||||
return ModelOutput(
|
||||
text_out=answer, img_out=Path(out_img) if vg_image is not None else None
|
||||
)
|
Loading…
Reference in New Issue
Block a user