DeepSeek-VL2/deepseek_vl2/serve/inference.py

199 lines
6.2 KiB
Python
Raw Normal View History

2024-12-13 07:38:59 -05:00
# Copyright (c) 2023-2024 DeepSeek.
#
# Permission is hereby granted, free of charge, to any person obtaining a copy of
# this software and associated documentation files (the "Software"), to deal in
# the Software without restriction, including without limitation the rights to
# use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
# the Software, and to permit persons to whom the Software is furnished to do so,
# subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
# FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
# COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
# IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
from threading import Thread
from typing import List
import torch
import transformers
from joblib.externals.cloudpickle import instance
from transformers import (
AutoModelForCausalLM,
StoppingCriteria,
StoppingCriteriaList,
TextIteratorStreamer,
)
2024-12-17 02:42:09 -05:00
from deepseek_vl2.models import DeepseekVLV2Processor, DeepseekVLV2ForCausalLM
from deepseek_vl2.models.conversation import Conversation
2024-12-13 07:38:59 -05:00
def load_model(model_path, dtype=torch.bfloat16):
vl_chat_processor = DeepseekVLV2Processor.from_pretrained(model_path)
tokenizer = vl_chat_processor.tokenizer
vl_gpt: DeepseekVLV2ForCausalLM = AutoModelForCausalLM.from_pretrained(
model_path, trust_remote_code=True, torch_dtype=dtype
)
vl_gpt = vl_gpt.cuda().eval()
return tokenizer, vl_gpt, vl_chat_processor
def convert_conversation_to_prompts(conversation: Conversation):
conv_prompts = []
last_image = None
2024-12-13 07:38:59 -05:00
messages = conversation.messages
for i in range(0, len(messages), 2):
if isinstance(messages[i][1], tuple):
text, images = messages[i][1]
last_image = images[-1]
2024-12-13 07:38:59 -05:00
else:
text, images = messages[i][1], []
prompt = {
"role": messages[i][0],
"content": text,
"images": images
2024-12-13 07:38:59 -05:00
}
response = {"role": messages[i + 1][0], "content": messages[i + 1][1]}
conv_prompts.extend([prompt, response])
return conv_prompts, last_image
2024-12-13 07:38:59 -05:00
class StoppingCriteriaSub(StoppingCriteria):
def __init__(self, stops=[], encounters=1):
super().__init__()
self.stops = [stop.to("cuda") for stop in stops]
def __call__(
self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs
):
for stop in self.stops:
if input_ids.shape[-1] < len(stop):
continue
if torch.all((stop == input_ids[0][-len(stop) :])).item():
return True
return False
@torch.inference_mode()
def deepseek_generate(
conversations: list,
2024-12-13 07:38:59 -05:00
vl_gpt: torch.nn.Module,
vl_chat_processor: DeepseekVLV2Processor,
tokenizer: transformers.PreTrainedTokenizer,
stop_words: list,
max_length: int = 256,
temperature: float = 1.0,
top_p: float = 1.0,
repetition_penalty: float = 1.1,
chunk_size: int = -1
2024-12-13 07:38:59 -05:00
):
pil_images = []
for message in conversations:
if "images" not in message:
continue
pil_images.extend(message["images"])
2024-12-13 07:38:59 -05:00
prepare_inputs = vl_chat_processor.__call__(
conversations=conversations,
2024-12-13 07:38:59 -05:00
images=pil_images,
inference_mode=True,
force_batchify=True,
system_prompt=""
).to(vl_gpt.device)
return generate(
vl_gpt,
tokenizer,
prepare_inputs,
max_gen_len=max_length,
temperature=temperature,
repetition_penalty=repetition_penalty,
top_p=top_p,
stop_words=stop_words,
chunk_size=chunk_size
2024-12-13 07:38:59 -05:00
)
@torch.inference_mode()
def generate(
vl_gpt,
tokenizer,
prepare_inputs,
max_gen_len: int = 256,
temperature: float = 0,
repetition_penalty=1.1,
top_p: float = 0.95,
stop_words: List[str] = [],
chunk_size: int = -1
2024-12-13 07:38:59 -05:00
):
"""Stream the text output from the multimodality model with prompt and image inputs."""
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True)
2024-12-13 07:38:59 -05:00
stop_words_ids = [
torch.tensor(tokenizer.encode(stop_word)) for stop_word in stop_words
]
stopping_criteria = StoppingCriteriaList(
[StoppingCriteriaSub(stops=stop_words_ids)]
)
if chunk_size != -1:
inputs_embeds, past_key_values = vl_gpt.incremental_prefilling(
input_ids=prepare_inputs.input_ids,
images=prepare_inputs.images,
images_seq_mask=prepare_inputs.images_seq_mask,
images_spatial_crop=prepare_inputs.images_spatial_crop,
attention_mask=prepare_inputs.attention_mask,
chunk_size=chunk_size
)
else:
inputs_embeds = vl_gpt.prepare_inputs_embeds(**prepare_inputs)
past_key_values = None
2024-12-13 07:38:59 -05:00
generation_config = dict(
inputs_embeds=inputs_embeds,
input_ids=prepare_inputs.input_ids,
images=prepare_inputs.images,
images_seq_mask=prepare_inputs.images_seq_mask,
images_spatial_crop=prepare_inputs.images_spatial_crop,
2024-12-13 07:38:59 -05:00
attention_mask=prepare_inputs.attention_mask,
past_key_values=past_key_values,
2024-12-13 07:38:59 -05:00
pad_token_id=tokenizer.eos_token_id,
bos_token_id=tokenizer.bos_token_id,
eos_token_id=tokenizer.eos_token_id,
max_new_tokens=max_gen_len,
do_sample=True,
use_cache=True,
streamer=streamer,
stopping_criteria=stopping_criteria,
)
if temperature > 0:
generation_config.update(
{
"do_sample": True,
"top_p": top_p,
"temperature": temperature,
"repetition_penalty": repetition_penalty,
}
)
else:
generation_config["do_sample"] = False
thread = Thread(target=vl_gpt.generate, kwargs=generation_config)
thread.start()
yield from streamer