add gradio demo.

This commit is contained in:
haoy945 2024-03-13 12:58:10 +08:00
parent 8d4d9a6ccf
commit a5bbf5f8bb
17 changed files with 1431 additions and 0 deletions

466
deepseek_vl/serve/app_deepseek.py Executable file
View File

@ -0,0 +1,466 @@
# -*- coding:utf-8 -*-
import gradio as gr
import torch
import base64
from io import BytesIO
from app_modules.gradio_utils import (cancel_outputing, delete_last_conversation, reset_state,
reset_textbox, transfer_input, wrap_gen_fn)
from app_modules.overwrites import reload_javascript
from app_modules.presets import CONCURRENT_COUNT, description, description_top, title
from app_modules.utils import (configure_logger, is_variable_assigned,
strip_stop_words)
from deepseek_vl.serve.inference import convert_conversation_to_prompts, deepseek_generate, load_model
from deepseek_vl.utils.conversation import SeparatorStyle
def load_models():
models = {
"DeepSeek-VL 7B": "/hf3fs-jd/prod/deepseek/shared/liuwen/ckpts/deepseek-vl-7b-chat",
}
for model_name in models:
models[model_name] = load_model(models[model_name])
return models
logger = configure_logger()
models = load_models()
MODELS = sorted(list(models.keys()))
def generate_prompt_with_history(text, image, history, vl_chat_processor, tokenizer, max_length=2048):
"""
Generate a prompt with history for the deepseek application.
Args:
text (str): The text prompt.
image (str): The image prompt.
history (list): List of previous conversation messages.
tokenizer: The tokenizer used for encoding the prompt.
max_length (int): The maximum length of the prompt.
Returns:
tuple: A tuple containing the generated prompt, image list, conversation, and conversation copy. If the prompt could not be generated within the max_length limit, returns None.
"""
sft_format = "deepseek"
user_role_ind = 0
bot_role_ind = 1
# Initialize conversation
conversation = vl_chat_processor.new_chat_template()
if history:
conversation.messages = history
if image is not None:
if '<image_placeholder>' not in text:
text = '<image_placeholder>' + '\n' + text # append the <image_placeholder> in a new line after the text prompt
text = (text, image)
conversation.append_message(conversation.roles[user_role_ind], text)
conversation.append_message(conversation.roles[bot_role_ind], "")
# Create a copy of the conversation to avoid history truncation in the UI
conversation_copy = conversation.copy()
logger.info("=" * 80)
logger.info(get_prompt(conversation))
rounds = len(conversation.messages) // 2
for _ in range(rounds):
current_prompt = get_prompt(conversation)
current_prompt = current_prompt.replace("</s>", "") if sft_format == "deepseek" else current_prompt
if torch.tensor(tokenizer.encode(current_prompt)).size(-1) <= max_length:
return conversation_copy
if len(conversation.messages) % 2 != 0:
gr.Error("The messages between user and assistant are not paired.")
return
try:
for _ in range(2): # pop out two messages in a row
conversation.messages.pop(0)
except IndexError:
gr.Error("Input text processing failed, unable to respond in this round.")
return None
gr.Error("Prompt could not be generated within max_length limit.")
return None
def to_gradio_chatbot(conv):
"""Convert the conversation to gradio chatbot format."""
ret = []
for i, (role, msg) in enumerate(conv.messages[conv.offset :]):
if i % 2 == 0:
if type(msg) is tuple:
msg, image = msg
if isinstance(image, str):
with open(image, 'rb') as f:
data = f.read()
img_b64_str = base64.b64encode(data).decode()
image_str = f'<video src="data:video/mp4;base64,{img_b64_str}" controls width="426" height="240"></video>'
msg = msg.replace('\n'.join(['<image_placeholder>'] * 4), image_str)
else:
max_hw, min_hw = max(image.size), min(image.size)
aspect_ratio = max_hw / min_hw
max_len, min_len = 800, 400
shortest_edge = int(min(max_len / aspect_ratio, min_len, min_hw))
longest_edge = int(shortest_edge * aspect_ratio)
W, H = image.size
if H > W:
H, W = longest_edge, shortest_edge
else:
H, W = shortest_edge, longest_edge
image = image.resize((W, H))
buffered = BytesIO()
image.save(buffered, format="JPEG")
img_b64_str = base64.b64encode(buffered.getvalue()).decode()
img_str = f'<img src="data:image/png;base64,{img_b64_str}" alt="user upload image" />'
msg = msg.replace('<image_placeholder>', img_str)
ret.append([msg, None])
else:
ret[-1][-1] = msg
return ret
def to_gradio_history(conv):
"""Convert the conversation to gradio history state."""
return conv.messages[conv.offset :]
def get_prompt(conv) -> str:
"""Get the prompt for generation."""
system_prompt = conv.system_template.format(system_message=conv.system_message)
if conv.sep_style == SeparatorStyle.DeepSeek:
seps = [conv.sep, conv.sep2]
if system_prompt == "" or system_prompt is None:
ret = ""
else:
ret = system_prompt + seps[0]
for i, (role, message) in enumerate(conv.messages):
if message:
if type(message) is tuple: # multimodal message
message, _ = message
ret += role + ": " + message + seps[i % 2]
else:
ret += role + ":"
return ret
else:
return conv.get_prompt
@wrap_gen_fn
def predict(
text,
image,
chatbot,
history,
top_p,
temperature,
repetition_penalty,
max_length_tokens,
max_context_length_tokens,
model_select_dropdown,
):
"""
Function to predict the response based on the user's input and selected model.
Parameters:
user_text (str): The input text from the user.
user_image (str): The input image from the user.
chatbot (str): The chatbot's name.
history (str): The history of the chat.
top_p (float): The top-p parameter for the model.
temperature (float): The temperature parameter for the model.
max_length_tokens (int): The maximum length of tokens for the model.
max_context_length_tokens (int): The maximum length of context tokens for the model.
model_select_dropdown (str): The selected model from the dropdown.
Returns:
generator: A generator that yields the chatbot outputs, history, and status.
"""
print("running the prediction function")
try:
tokenizer, vl_gpt, vl_chat_processor = models[model_select_dropdown]
if text == "":
yield chatbot, history, "Empty context."
return
except KeyError:
yield [[text, "No Model Found"]], [], "No Model Found"
return
conversation = generate_prompt_with_history(
text, image, history, vl_chat_processor, tokenizer, max_length=max_context_length_tokens
)
prompts = convert_conversation_to_prompts(conversation)
stop_words = conversation.stop_str
gradio_chatbot_output = to_gradio_chatbot(conversation)
full_response = ""
with torch.no_grad():
for x in deepseek_generate(
prompts=prompts,
vl_gpt=vl_gpt,
vl_chat_processor=vl_chat_processor,
tokenizer=tokenizer,
stop_words=stop_words,
max_length=max_length_tokens,
temperature=temperature,
repetition_penalty=repetition_penalty,
top_p=top_p,
):
full_response += x
response = strip_stop_words(full_response, stop_words)
conversation.update_last_message(response)
gradio_chatbot_output[-1][1] = response
yield gradio_chatbot_output, to_gradio_history(conversation), "Generating..."
print("flushed result to gradio")
torch.cuda.empty_cache()
if is_variable_assigned("x"):
print(f"{model_select_dropdown}:\n{text}\n{'-' * 80}\n{x}\n{'=' * 80}")
print(
f"temperature: {temperature}, top_p: {top_p}, repetition_penalty: {repetition_penalty}, max_length_tokens: {max_length_tokens}"
)
yield gradio_chatbot_output, to_gradio_history(conversation), "Generate: Success"
def retry(
text,
image,
chatbot,
history,
top_p,
temperature,
repetition_penalty,
max_length_tokens,
max_context_length_tokens,
model_select_dropdown,
):
if len(history) == 0:
yield (chatbot, history, "Empty context")
return
chatbot.pop()
history.pop()
text = history.pop()[-1]
if type(text) is tuple:
text, image = text
yield from predict(
text,
image,
chatbot,
history,
top_p,
temperature,
repetition_penalty,
max_length_tokens,
max_context_length_tokens,
model_select_dropdown,
)
def build_demo(MODELS):
with open("deepseek_vl/serve/assets/custom.css", "r", encoding="utf-8") as f:
customCSS = f.read()
with gr.Blocks(theme=gr.themes.Soft()) as demo:
history = gr.State([])
input_text = gr.State()
input_image = gr.State()
with gr.Row():
gr.HTML(title)
status_display = gr.Markdown("Success", elem_id="status_display")
gr.Markdown(description_top)
with gr.Row(equal_height=True):
with gr.Column(scale=4):
with gr.Row():
chatbot = gr.Chatbot(
elem_id="deepseek_chatbot",
show_share_button=True,
likeable=True,
bubble_full_width=False,
height=600,
)
with gr.Row():
with gr.Column(scale=4):
text_box = gr.Textbox(show_label=False, placeholder="Enter text", container=False)
with gr.Column(
min_width=70,
):
submitBtn = gr.Button("Send")
with gr.Column(
min_width=70,
):
cancelBtn = gr.Button("Stop")
with gr.Row():
emptyBtn = gr.Button(
"🧹 New Conversation",
)
retryBtn = gr.Button("🔄 Regenerate")
delLastBtn = gr.Button("🗑️ Remove Last Turn")
with gr.Column():
image_box = gr.Image(type="pil")
with gr.Tab(label="Parameter Setting") as parameter_row:
top_p = gr.Slider(
minimum=-0,
maximum=1.0,
value=0.95,
step=0.05,
interactive=True,
label="Top-p",
)
temperature = gr.Slider(
minimum=0,
maximum=1.0,
value=0.1,
step=0.1,
interactive=True,
label="Temperature",
)
repetition_penalty = gr.Slider(
minimum=0.0,
maximum=2.0,
value=1.1,
step=0.1,
interactive=True,
label="Repetition penalty",
)
max_length_tokens = gr.Slider(
minimum=0,
maximum=4096,
value=2048,
step=8,
interactive=True,
label="Max Generation Tokens",
)
max_context_length_tokens = gr.Slider(
minimum=0,
maximum=4096,
value=4096,
step=128,
interactive=True,
label="Max History Tokens",
)
model_select_dropdown = gr.Dropdown(
label="Select Models",
choices=MODELS,
multiselect=False,
value=MODELS[0],
interactive=True,
)
examples_list = [
[
'deepseek_vl/serve/examples/rap.jpeg',
'Can you write me a master rap song that rhymes very well based on this image?',
],
[
'deepseek_vl/serve/examples/app.png',
'What is this app about?',
],
[
'deepseek_vl/serve/examples/pipeline.png',
'Help me write a python code based on the image.',
],
[
'deepseek_vl/serve/examples/chart.png',
'Could you help me to re-draw this picture with python codes?',
],
[
'deepseek_vl/serve/examples/mirror.png',
'How many people are there in the image. Why?',
],
[
'deepseek_vl/serve/examples/puzzle.png',
'Can this 2 pieces combine together?',
],
]
gr.Examples(examples=examples_list, inputs=[image_box, text_box])
gr.Markdown(description)
input_widgets = [
input_text,
input_image,
chatbot,
history,
top_p,
temperature,
repetition_penalty,
max_length_tokens,
max_context_length_tokens,
model_select_dropdown,
]
output_widgets = [chatbot, history, status_display]
transfer_input_args = dict(
fn=transfer_input,
inputs=[text_box, image_box],
outputs=[input_text, input_image, text_box, image_box, submitBtn],
show_progress=True,
)
predict_args = dict(
fn=predict,
inputs=input_widgets,
outputs=output_widgets,
show_progress=True,
)
retry_args = dict(
fn=retry,
inputs=input_widgets,
outputs=output_widgets,
show_progress=True,
)
reset_args = dict(fn=reset_textbox, inputs=[], outputs=[text_box, status_display])
predict_events = [
text_box.submit(**transfer_input_args).then(**predict_args),
submitBtn.click(**transfer_input_args).then(**predict_args),
]
emptyBtn.click(reset_state, outputs=output_widgets, show_progress=True)
emptyBtn.click(**reset_args)
retryBtn.click(**retry_args)
delLastBtn.click(
delete_last_conversation,
[chatbot, history],
output_widgets,
show_progress=True,
)
cancelBtn.click(cancel_outputing, [], [status_display], cancels=predict_events)
return demo
if __name__ == "__main__":
demo = build_demo(MODELS)
demo.title = "DeepSeek-VL Chatbot"
reload_javascript()
demo.queue(concurrency_count=CONCURRENT_COUNT).launch(
share=False,
favicon_path="deepseek_vl/serve/assets/favicon.ico",
inbrowser=False,
server_name="0.0.0.0",
server_port=8122,
)

View File

@ -0,0 +1,75 @@
from functools import wraps
import gradio as gr
def wrap_gen_fn(gen_fn):
@wraps(gen_fn)
def wrapped_gen_fn(prompt, *args, **kwargs):
try:
yield from gen_fn(prompt, *args, **kwargs)
except gr.Error as g_err:
raise g_err
except Exception as e:
raise gr.Error(f'Failed to generate text: {e}') from e
return wrapped_gen_fn
def delete_last_conversation(chatbot, history):
if len(history) % 2 != 0:
gr.Error("history length is not even")
return (
chatbot,
history,
"Delete Done",
)
if len(chatbot) > 0:
chatbot.pop()
if len(history) > 0 and len(history) % 2 == 0:
history.pop()
history.pop()
return (
chatbot,
history,
"Delete Done",
)
def reset_state():
return [], [], None, "Reset Done"
def reset_textbox():
return gr.update(value=""), ""
def cancel_outputing():
return "Stop Done"
def transfer_input(input_text, input_image):
print("transferring input text and input image")
return (
input_text,
input_image,
gr.update(value=""),
gr.update(value=None),
gr.Button(visible=True),
)
class State:
interrupted = False
def interrupt(self):
self.interrupted = True
def recover(self):
self.interrupted = False
shared_state = State()

View File

@ -0,0 +1,60 @@
from __future__ import annotations
import logging
from typing import List, Tuple
from app_modules.presets import *
from app_modules.utils import *
def compact_text_chunks(self, prompt, text_chunks: List[str]) -> List[str]:
logging.debug("Compacting text chunks...🚀🚀🚀")
combined_str = [c.strip() for c in text_chunks if c.strip()]
combined_str = [f"[{index+1}] {c}" for index, c in enumerate(combined_str)]
combined_str = "\n\n".join(combined_str)
# resplit based on self.max_chunk_overlap
text_splitter = self.get_text_splitter_given_prompt(prompt, 1, padding=1)
return text_splitter.split_text(combined_str)
def postprocess(self, y: List[Tuple[str | None, str | None]]) -> List[Tuple[str | None, str | None]]:
"""
Parameters:
y: List of tuples representing the message and response pairs. Each message and response should be a string, which may be in Markdown format.
Returns:
List of tuples representing the message and response. Each message and response will be a string of HTML.
"""
if y is None or y == []:
return []
temp = []
for x in y:
user, bot = x
if not detect_converted_mark(user):
user = convert_asis(user)
if not detect_converted_mark(bot):
bot = convert_mdtext(bot)
temp.append((user, bot))
return temp
with open("deepseek_vl/serve/assets/custom.js", "r", encoding="utf-8") as f, open(
"deepseek_vl/serve/assets/Kelpy-Codos.js", "r", encoding="utf-8"
) as f2:
customJS = f.read()
kelpyCodos = f2.read()
def reload_javascript():
print("Reloading javascript...")
js = f'<script>{customJS}</script><script>{kelpyCodos}</script>'
def template_response(*args, **kwargs):
res = GradioTemplateResponseOriginal(*args, **kwargs)
res.body = res.body.replace(b'</html>', f'{js}</html>'.encode("utf8"))
res.init_headers()
return res
gr.routes.templates.TemplateResponse = template_response
GradioTemplateResponseOriginal = gr.routes.templates.TemplateResponse

View File

@ -0,0 +1,77 @@
# -*- coding:utf-8 -*-
import gradio as gr
title = """<h1 align="left" style="min-width:200px; margin-top:0;">Chat with DeepSeek-VL </h1>"""
description_top = """"""
description = """"""
CONCURRENT_COUNT = 10
ALREADY_CONVERTED_MARK = "<!-- ALREADY CONVERTED BY PARSER. -->"
small_and_beautiful_theme = gr.themes.Soft(
primary_hue=gr.themes.Color(
c50="#EBFAF2",
c100="#CFF3E1",
c200="#A8EAC8",
c300="#77DEA9",
c400="#3FD086",
c500="#02C160",
c600="#06AE56",
c700="#05974E",
c800="#057F45",
c900="#04673D",
c950="#2E5541",
name="small_and_beautiful",
),
secondary_hue=gr.themes.Color(
c50="#576b95",
c100="#576b95",
c200="#576b95",
c300="#576b95",
c400="#576b95",
c500="#576b95",
c600="#576b95",
c700="#576b95",
c800="#576b95",
c900="#576b95",
c950="#576b95",
),
neutral_hue=gr.themes.Color(
name="gray",
c50="#f6f7f8",
# c100="#f3f4f6",
c100="#F2F2F2",
c200="#e5e7eb",
c300="#d1d5db",
c400="#B2B2B2",
c500="#808080",
c600="#636363",
c700="#515151",
c800="#393939",
# c900="#272727",
c900="#2B2B2B",
c950="#171717",
),
radius_size=gr.themes.sizes.radius_sm,
).set(
# button_primary_background_fill="*primary_500",
button_primary_background_fill_dark="*primary_600",
# button_primary_background_fill_hover="*primary_400",
# button_primary_border_color="*primary_500",
button_primary_border_color_dark="*primary_600",
button_primary_text_color="white",
button_primary_text_color_dark="white",
button_secondary_background_fill="*neutral_100",
button_secondary_background_fill_hover="*neutral_50",
button_secondary_background_fill_dark="*neutral_900",
button_secondary_text_color="*neutral_800",
button_secondary_text_color_dark="white",
# background_fill_primary="#F7F7F7",
# background_fill_primary_dark="#1F1F1F",
# block_title_text_color="*primary_500",
block_title_background_fill_dark="*primary_900",
block_label_background_fill_dark="*primary_900",
input_background_fill="#F6F6F6",
# chatbot_code_background_color_dark="*neutral_950",
)

View File

@ -0,0 +1,200 @@
# -*- coding:utf-8 -*-
from __future__ import annotations
import html
import logging
import re
import time
import mdtex2html
from markdown import markdown
from pygments import highlight
from pygments.formatters import HtmlFormatter
from pygments.lexers import ClassNotFound, get_lexer_by_name, guess_lexer
from app_modules.presets import ALREADY_CONVERTED_MARK
logger = logging.getLogger('gradio_logger')
def configure_logger():
logger = logging.getLogger('gradio_logger')
logger.setLevel(logging.DEBUG)
timestr = time.strftime("%Y%m%d-%H%M%S")
file_handler = logging.FileHandler(f'deepseek_vl/serve/logs/{timestr}_gradio_log.log')
console_handler = logging.StreamHandler()
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
console_handler.setFormatter(formatter)
file_handler.setFormatter(formatter)
console_handler.setLevel(logging.INFO)
file_handler.setLevel(logging.INFO)
logger.addHandler(console_handler)
logger.addHandler(file_handler)
return logger
def strip_stop_words(x, stop_words):
for w in stop_words:
if w in x:
return x[: x.index(w)].strip()
return x.strip()
def format_output(history, text, x):
updated_history = history + [[text, x]]
a = [[y[0], convert_to_markdown(y[1])] for y in updated_history]
return a, updated_history
def markdown_to_html_with_syntax_highlight(md_str): # deprecated
def replacer(match):
lang = match.group(1) or "text"
code = match.group(2)
try:
lexer = get_lexer_by_name(lang, stripall=True)
except ValueError:
lexer = get_lexer_by_name("text", stripall=True)
formatter = HtmlFormatter()
highlighted_code = highlight(code, lexer, formatter)
return f'<pre><code class="{lang}">{highlighted_code}</code></pre>'
code_block_pattern = r"```(\w+)?\n([\s\S]+?)\n```"
md_str = re.sub(code_block_pattern, replacer, md_str, flags=re.MULTILINE)
html_str = markdown(md_str)
return html_str
def normalize_markdown(md_text: str) -> str: # deprecated
lines = md_text.split("\n")
normalized_lines = []
inside_list = False
for i, line in enumerate(lines):
if re.match(r"^(\d+\.|-|\*|\+)\s", line.strip()):
if not inside_list and i > 0 and lines[i - 1].strip() != "":
normalized_lines.append("")
inside_list = True
normalized_lines.append(line)
elif inside_list and line.strip() == "":
if i < len(lines) - 1 and not re.match(r"^(\d+\.|-|\*|\+)\s", lines[i + 1].strip()):
normalized_lines.append(line)
continue
else:
inside_list = False
normalized_lines.append(line)
return "\n".join(normalized_lines)
def convert_mdtext(md_text):
code_block_pattern = re.compile(r"```(.*?)(?:```|$)", re.DOTALL)
inline_code_pattern = re.compile(r"`(.*?)`", re.DOTALL)
code_blocks = code_block_pattern.findall(md_text)
non_code_parts = code_block_pattern.split(md_text)[::2]
result = []
for non_code, code in zip(non_code_parts, code_blocks + [""]):
if non_code.strip():
non_code = normalize_markdown(non_code)
if inline_code_pattern.search(non_code):
result.append(markdown(non_code, extensions=["tables"]))
else:
result.append(mdtex2html.convert(non_code, extensions=["tables"]))
if code.strip():
code = f"\n```{code}\n\n```"
code = markdown_to_html_with_syntax_highlight(code)
result.append(code)
result = "".join(result)
result += ALREADY_CONVERTED_MARK
return result
def convert_asis(userinput):
return f'<p style=\"white-space:pre-wrap;\">{html.escape(userinput)}</p>{ALREADY_CONVERTED_MARK}'
def is_stop_word_or_prefix(s: str, stop_words: list) -> bool:
return any(s.endswith(stop_word) for stop_word in stop_words)
def detect_converted_mark(userinput):
return bool(userinput.endswith(ALREADY_CONVERTED_MARK))
def detect_language(code):
first_line = "" if code.startswith("\n") else code.strip().split("\n", 1)[0]
language = first_line.lower() if first_line else ""
code_without_language = code[len(first_line) :].lstrip() if first_line else code
return language, code_without_language
def convert_to_markdown(text):
text = text.replace("$", "&#36;")
text = text.replace("\r\n", "\n")
def replace_leading_tabs_and_spaces(line):
new_line = []
for char in line:
if char == "\t":
new_line.append("&#9;")
elif char == " ":
new_line.append("&nbsp;")
else:
break
return "".join(new_line) + line[len(new_line) :]
markdown_text = ""
lines = text.split("\n")
in_code_block = False
for line in lines:
if in_code_block is False and line.startswith("```"):
in_code_block = True
markdown_text += f"{line}\n"
elif in_code_block is True and line.startswith("```"):
in_code_block = False
markdown_text += f"{line}\n"
elif in_code_block:
markdown_text += f"{line}\n"
else:
line = replace_leading_tabs_and_spaces(line)
line = re.sub(r"^(#)", r"\\\1", line)
markdown_text += f"{line} \n"
return markdown_text
def add_language_tag(text):
def detect_language(code_block):
try:
lexer = guess_lexer(code_block)
return lexer.name.lower()
except ClassNotFound:
return ""
code_block_pattern = re.compile(r"(```)(\w*\n[^`]+```)", re.MULTILINE)
def replacement(match):
code_block = match.group(2)
if match.group(2).startswith("\n"):
language = detect_language(code_block)
return f"```{language}{code_block}```" if language else f"```\n{code_block}```"
else:
return match.group(1) + code_block + "```"
text2 = code_block_pattern.sub(replacement, text)
return text2
def is_variable_assigned(var_name: str) -> bool:
return var_name in locals()

View File

@ -0,0 +1,79 @@
// ==UserScript==
// @name Kelpy Codos
// @namespace https://github.com/Keldos-Li/Kelpy-Codos
// @version 1.0.5
// @author Keldos; https://keldos.me/
// @description Add copy button to PRE tags before CODE tag, for Chuanhu ChatGPT especially.
// Based on Chuanhu ChatGPT version: ac04408 (2023-3-22)
// @license GPL-3.0
// @grant none
// ==/UserScript==
(function () {
"use strict";
function addCopyButton(pre) {
var code = pre.querySelector("code");
if (!code) {
return; // 如果没有找到 <code> 元素,则不添加按钮
}
var firstChild = code.firstChild;
if (!firstChild) {
return; // 如果 <code> 元素没有子节点,则不添加按钮
}
var button = document.createElement("button");
button.textContent = "\uD83D\uDCCE"; // 使用 📎 符号作为“复制”按钮的文本
button.style.position = "relative";
button.style.float = "right";
button.style.fontSize = "1em"; // 可选:调整按钮大小
button.style.background = "none"; // 可选:去掉背景颜色
button.style.border = "none"; // 可选:去掉边框
button.style.cursor = "pointer"; // 可选:显示指针样式
button.addEventListener("click", function () {
var range = document.createRange();
range.selectNodeContents(code);
range.setStartBefore(firstChild); // 将范围设置为第一个子节点之前
var selection = window.getSelection();
selection.removeAllRanges();
selection.addRange(range);
try {
var success = document.execCommand("copy");
if (success) {
button.textContent = "\u2714";
setTimeout(function () {
button.textContent = "\uD83D\uDCCE"; // 恢复按钮为“复制”
}, 2000);
} else {
button.textContent = "\u2716";
}
} catch (e) {
console.error(e);
button.textContent = "\u2716";
}
selection.removeAllRanges();
});
code.insertBefore(button, firstChild); // 将按钮插入到第一个子元素之前
}
function handleNewElements(mutationsList, observer) {
for (var mutation of mutationsList) {
if (mutation.type === "childList") {
for (var node of mutation.addedNodes) {
if (node.nodeName === "PRE") {
addCopyButton(node);
}
}
}
}
}
var observer = new MutationObserver(handleNewElements);
observer.observe(document.documentElement, {
childList: true,
subtree: true,
});
document.querySelectorAll("pre").forEach(addCopyButton);
})();

Binary file not shown.

After

Width:  |  Height:  |  Size: 61 KiB

View File

@ -0,0 +1,334 @@
:root {
--chatbot-color-light: #f3f3f3;
--chatbot-color-dark: #121111;
}
/* status_display */
#status_display {
display: flex;
min-height: 2.5em;
align-items: flex-end;
justify-content: flex-end;
}
#status_display p {
font-size: 0.85em;
font-family: monospace;
color: var(--body-text-color-subdued);
}
/* usage_display */
#usage_display {
height: 1em;
}
#usage_display p {
padding: 0 1em;
font-size: 0.85em;
font-family: monospace;
color: var(--body-text-color-subdued);
}
/* list */
ol:not(.options),
ul:not(.options) {
padding-inline-start: 2em !important;
}
/* Thank @Keldos-Li for fixing it */
/* Light mode (default) */
#deepseek_chatbot {
background-color: var(--chatbot-color-light) !important;
color: #000000 !important;
}
[data-testid="bot"] {
background-color: #ffffff !important;
}
[data-testid="user"] {
background-color: #95ec69 !important;
}
/* Dark mode */
.dark #deepseek_chatbot {
background-color: var(--chatbot-color-dark) !important;
color: #ffffff !important;
}
.dark [data-testid="bot"] {
background-color: #2c2c2c !important;
}
.dark [data-testid="user"] {
background-color: #26b561 !important;
}
#deepseek_chatbot {
height: 100%;
min-height: 800px;
flex-grow: 1;
overflow: auto;
}
[class*="message"] {
border-radius: var(--radius-xl) !important;
border: none;
padding: var(--spacing-xl) !important;
font-size: var(--text-md) !important;
line-height: var(--line-md) !important;
min-height: calc(var(--text-md) * var(--line-md) + 2 * var(--spacing-xl));
min-width: calc(var(--text-md) * var(--line-md) + 2 * var(--spacing-xl));
}
[data-testid="bot"] {
max-width: 85%;
border-bottom-left-radius: 0 !important;
}
[data-testid="user"] {
max-width: 85%;
width: auto !important;
border-bottom-right-radius: 0 !important;
}
/* Table */
table {
margin: 1em 0;
border-collapse: collapse;
empty-cells: show;
}
td,
th {
border: 1.2px solid var(--border-color-primary) !important;
padding: 0.2em;
}
thead {
background-color: rgba(175, 184, 193, 0.2);
}
thead th {
padding: 0.5em 0.2em;
}
/* Inline code */
#deepseek_chatbot code {
display: inline;
white-space: break-spaces;
border-radius: 6px;
margin: 0 2px 0 2px;
padding: 0.2em 0.4em 0.1em 0.4em;
background-color: rgba(175, 184, 193, 0.2);
}
/* Code block */
#deepseek_chatbot pre code {
display: block;
overflow: auto;
white-space: pre;
background-color: #1c1d1e !important;
border-radius: 10px;
padding: 1.4em 1.2em 0em 1.4em;
margin: 1.2em 2em 1.2em 0.5em;
color: #fdf8f8;
box-shadow: 6px 6px 16px hsla(0, 0%, 0%, 0.2);
}
/* Hightlight */
#deepseek_chatbot .highlight {
background-color: transparent;
}
#deepseek_chatbot .highlight .hll {
background-color: #49483e;
}
#deepseek_chatbot .highlight .c {
color: #75715e;
} /* Comment */
#deepseek_chatbot .highlight .err {
color: #960050;
background-color: #1e0010;
} /* Error */
#deepseek_chatbot .highlight .k {
color: #66d9ef;
} /* Keyword */
#deepseek_chatbot .highlight .l {
color: #ae81ff;
} /* Literal */
#deepseek_chatbot .highlight .n {
color: #f8f8f2;
} /* Name */
#deepseek_chatbot .highlight .o {
color: #f92672;
} /* Operator */
#deepseek_chatbot .highlight .p {
color: #f8f8f2;
} /* Punctuation */
#deepseek_chatbot .highlight .ch {
color: #75715e;
} /* Comment.Hashbang */
#deepseek_chatbot .highlight .cm {
color: #75715e;
} /* Comment.Multiline */
#deepseek_chatbot .highlight .cp {
color: #75715e;
} /* Comment.Preproc */
#deepseek_chatbot .highlight .cpf {
color: #75715e;
} /* Comment.PreprocFile */
#deepseek_chatbot .highlight .c1 {
color: #75715e;
} /* Comment.Single */
#deepseek_chatbot .highlight .cs {
color: #75715e;
} /* Comment.Special */
#deepseek_chatbot .highlight .gd {
color: #f92672;
} /* Generic.Deleted */
#deepseek_chatbot .highlight .ge {
font-style: italic;
} /* Generic.Emph */
#deepseek_chatbot .highlight .gi {
color: #a6e22e;
} /* Generic.Inserted */
#deepseek_chatbot .highlight .gs {
font-weight: bold;
} /* Generic.Strong */
#deepseek_chatbot .highlight .gu {
color: #75715e;
} /* Generic.Subheading */
#deepseek_chatbot .highlight .kc {
color: #66d9ef;
} /* Keyword.Constant */
#deepseek_chatbot .highlight .kd {
color: #66d9ef;
} /* Keyword.Declaration */
#deepseek_chatbot .highlight .kn {
color: #f92672;
} /* Keyword.Namespace */
#deepseek_chatbot .highlight .kp {
color: #66d9ef;
} /* Keyword.Pseudo */
#deepseek_chatbot .highlight .kr {
color: #66d9ef;
} /* Keyword.Reserved */
#deepseek_chatbot .highlight .kt {
color: #66d9ef;
} /* Keyword.Type */
#deepseek_chatbot .highlight .ld {
color: #e6db74;
} /* Literal.Date */
#deepseek_chatbot .highlight .m {
color: #ae81ff;
} /* Literal.Number */
#deepseek_chatbot .highlight .s {
color: #e6db74;
} /* Literal.String */
#deepseek_chatbot .highlight .na {
color: #a6e22e;
} /* Name.Attribute */
#deepseek_chatbot .highlight .nb {
color: #f8f8f2;
} /* Name.Builtin */
#deepseek_chatbot .highlight .nc {
color: #a6e22e;
} /* Name.Class */
#deepseek_chatbot .highlight .no {
color: #66d9ef;
} /* Name.Constant */
#deepseek_chatbot .highlight .nd {
color: #a6e22e;
} /* Name.Decorator */
#deepseek_chatbot .highlight .ni {
color: #f8f8f2;
} /* Name.Entity */
#deepseek_chatbot .highlight .ne {
color: #a6e22e;
} /* Name.Exception */
#deepseek_chatbot .highlight .nf {
color: #a6e22e;
} /* Name.Function */
#deepseek_chatbot .highlight .nl {
color: #f8f8f2;
} /* Name.Label */
#deepseek_chatbot .highlight .nn {
color: #f8f8f2;
} /* Name.Namespace */
#deepseek_chatbot .highlight .nx {
color: #a6e22e;
} /* Name.Other */
#deepseek_chatbot .highlight .py {
color: #f8f8f2;
} /* Name.Property */
#deepseek_chatbot .highlight .nt {
color: #f92672;
} /* Name.Tag */
#deepseek_chatbot .highlight .nv {
color: #f8f8f2;
} /* Name.Variable */
#deepseek_chatbot .highlight .ow {
color: #f92672;
} /* Operator.Word */
#deepseek_chatbot .highlight .w {
color: #f8f8f2;
} /* Text.Whitespace */
#deepseek_chatbot .highlight .mb {
color: #ae81ff;
} /* Literal.Number.Bin */
#deepseek_chatbot .highlight .mf {
color: #ae81ff;
} /* Literal.Number.Float */
#deepseek_chatbot .highlight .mh {
color: #ae81ff;
} /* Literal.Number.Hex */
#deepseek_chatbot .highlight .mi {
color: #ae81ff;
} /* Literal.Number.Integer */
#deepseek_chatbot .highlight .mo {
color: #ae81ff;
} /* Literal.Number.Oct */
#deepseek_chatbot .highlight .sa {
color: #e6db74;
} /* Literal.String.Affix */
#deepseek_chatbot .highlight .sb {
color: #e6db74;
} /* Literal.String.Backtick */
#deepseek_chatbot .highlight .sc {
color: #e6db74;
} /* Literal.String.Char */
#deepseek_chatbot .highlight .dl {
color: #e6db74;
} /* Literal.String.Delimiter */
#deepseek_chatbot .highlight .sd {
color: #e6db74;
} /* Literal.String.Doc */
#deepseek_chatbot .highlight .s2 {
color: #e6db74;
} /* Literal.String.Double */
#deepseek_chatbot .highlight .se {
color: #ae81ff;
} /* Literal.String.Escape */
#deepseek_chatbot .highlight .sh {
color: #e6db74;
} /* Literal.String.Heredoc */
#deepseek_chatbot .highlight .si {
color: #e6db74;
} /* Literal.String.Interpol */
#deepseek_chatbot .highlight .sx {
color: #e6db74;
} /* Literal.String.Other */
#deepseek_chatbot .highlight .sr {
color: #e6db74;
} /* Literal.String.Regex */
#deepseek_chatbot .highlight .s1 {
color: #e6db74;
} /* Literal.String.Single */
#deepseek_chatbot .highlight .ss {
color: #e6db74;
} /* Literal.String.Symbol */
#deepseek_chatbot .highlight .bp {
color: #f8f8f2;
} /* Name.Builtin.Pseudo */
#deepseek_chatbot .highlight .fm {
color: #a6e22e;
} /* Name.Function.Magic */
#deepseek_chatbot .highlight .vc {
color: #f8f8f2;
} /* Name.Variable.Class */
#deepseek_chatbot .highlight .vg {
color: #f8f8f2;
} /* Name.Variable.Global */
#deepseek_chatbot .highlight .vi {
color: #f8f8f2;
} /* Name.Variable.Instance */
#deepseek_chatbot .highlight .vm {
color: #f8f8f2;
} /* Name.Variable.Magic */
#deepseek_chatbot .highlight .il {
color: #ae81ff;
} /* Literal.Number.Integer.Long */

View File

@ -0,0 +1 @@
// custom javascript here

Binary file not shown.

After

Width:  |  Height:  |  Size: 15 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 81 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 153 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 266 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 37 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 190 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 56 KiB

139
deepseek_vl/serve/inference.py Executable file
View File

@ -0,0 +1,139 @@
from threading import Thread
from typing import List
import torch
import transformers
from transformers import (AutoModelForCausalLM, StoppingCriteria, StoppingCriteriaList,
TextIteratorStreamer)
from deepseek_vl.models import VLChatProcessor, MultiModalityCausalLM
from deepseek_vl.utils.conversation import Conversation
def load_model(model_path):
vl_chat_processor: VLChatProcessor = VLChatProcessor.from_pretrained(model_path)
tokenizer = vl_chat_processor.tokenizer
vl_gpt: MultiModalityCausalLM = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True)
vl_gpt = vl_gpt.to(torch.bfloat16).cuda().eval()
return tokenizer, vl_gpt, vl_chat_processor
def convert_conversation_to_prompts(conversation: Conversation):
prompts = []
messages = conversation.messages
for i in range(0, len(messages), 2):
prompt = {
"role": messages[i][0],
"content": messages[i][1][0] if isinstance(messages[i][1], tuple) else messages[i][1],
"images": [messages[i][1][1]] if isinstance(messages[i][1], tuple) else [],
}
response = {"role": messages[i + 1][0], "content": messages[i + 1][1]}
prompts.extend([prompt, response])
return prompts
class StoppingCriteriaSub(StoppingCriteria):
def __init__(self, stops=[], encounters=1):
super().__init__()
self.stops = [stop.to("cuda") for stop in stops]
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs):
for stop in self.stops:
if input_ids.shape[-1] < len(stop):
continue
if torch.all((stop == input_ids[0][-len(stop) :])).item():
return True
return False
@torch.inference_mode()
def deepseek_generate(
prompts: list,
vl_gpt: torch.nn.Module,
vl_chat_processor,
tokenizer: transformers.PreTrainedTokenizer,
stop_words: list,
max_length: int = 256,
temperature: float = 1.0,
top_p: float = 1.0,
repetition_penalty=1.1,
):
prompts = prompts
pil_images = list()
for message in prompts:
if "images" not in message:
continue
for pil_img in message["images"]:
pil_images.append(pil_img)
prepare_inputs = vl_chat_processor(
conversations=prompts,
images=pil_images,
force_batchify=True
).to(vl_gpt.device)
return generate(
vl_gpt,
tokenizer,
prepare_inputs,
max_length,
temperature,
repetition_penalty,
top_p,
stop_words,
)
@torch.inference_mode()
def generate(
vl_gpt,
tokenizer,
prepare_inputs,
max_gen_len: int = 256,
temperature: float = 0,
repetition_penalty=1.1,
top_p: float = 0.95,
stop_words: List[str] = [],
):
"""Stream the text output from the multimodality model with prompt and image inputs."""
inputs_embeds = vl_gpt.prepare_inputs_embeds(**prepare_inputs)
streamer = TextIteratorStreamer(tokenizer)
stop_words_ids = [
torch.tensor(tokenizer.encode(stop_word)) for stop_word in stop_words
]
stopping_criteria = StoppingCriteriaList([StoppingCriteriaSub(stops=stop_words_ids)])
generation_config = dict(
inputs_embeds=inputs_embeds,
attention_mask=prepare_inputs.attention_mask,
pad_token_id=tokenizer.eos_token_id,
bos_token_id=tokenizer.bos_token_id,
eos_token_id=tokenizer.eos_token_id,
max_new_tokens=max_gen_len,
do_sample=True,
use_cache=True,
streamer=streamer,
stopping_criteria=stopping_criteria,
)
if temperature > 0:
generation_config.update(
{
"do_sample": True,
"top_p": top_p,
"temperature": temperature,
"repetition_penalty": repetition_penalty,
}
)
else:
generation_config["do_sample"] = False
thread = Thread(target=vl_gpt.language_model.generate, kwargs=generation_config)
thread.start()
yield from streamer