mirror of
https://github.com/deepseek-ai/DeepSeek-VL.git
synced 2025-04-19 18:19:03 -04:00
First commit
This commit is contained in:
parent
f0e10dbb86
commit
53c540ec9a
17
.dockerignore
Normal file
17
.dockerignore
Normal file
@ -0,0 +1,17 @@
|
|||||||
|
# The .dockerignore file excludes files from the container build process.
|
||||||
|
#
|
||||||
|
# https://docs.docker.com/engine/reference/builder/#dockerignore-file
|
||||||
|
|
||||||
|
# Exclude Git files
|
||||||
|
.git
|
||||||
|
.github
|
||||||
|
.gitignore
|
||||||
|
|
||||||
|
# Exclude Python cache files
|
||||||
|
__pycache__
|
||||||
|
.mypy_cache
|
||||||
|
.pytest_cache
|
||||||
|
.ruff_cache
|
||||||
|
|
||||||
|
# Exclude Python virtual environment
|
||||||
|
/venv
|
2
.gitignore
vendored
2
.gitignore
vendored
@ -413,3 +413,5 @@ Sessionx.vim
|
|||||||
tags
|
tags
|
||||||
# Persistent undo
|
# Persistent undo
|
||||||
[._]*.un~
|
[._]*.un~
|
||||||
|
|
||||||
|
.cog
|
||||||
|
19
cog.yaml
Normal file
19
cog.yaml
Normal file
@ -0,0 +1,19 @@
|
|||||||
|
# Configuration for Cog ⚙️
|
||||||
|
# Reference: https://github.com/replicate/cog/blob/main/docs/yaml.md
|
||||||
|
|
||||||
|
build:
|
||||||
|
gpu: true
|
||||||
|
python_version: "3.9"
|
||||||
|
python_packages:
|
||||||
|
- "accelerate==0.27.2"
|
||||||
|
- "attrdict==2.0.1"
|
||||||
|
- "einops==0.7.0"
|
||||||
|
- "sentencepiece==0.2.0"
|
||||||
|
- "torch==2.0.1"
|
||||||
|
- "torchvision==0.15.2"
|
||||||
|
- "transformers>=4.38.2"
|
||||||
|
- "timm>=0.9.16"
|
||||||
|
- "hf_transfer==0.1.6"
|
||||||
|
|
||||||
|
# predict.py defines how predictions are run on your model
|
||||||
|
predict: "predict.py:Predictor"
|
77
predict.py
Normal file
77
predict.py
Normal file
@ -0,0 +1,77 @@
|
|||||||
|
# Prediction interface for Cog ⚙️
|
||||||
|
# https://github.com/replicate/cog/blob/main/docs/python.md
|
||||||
|
|
||||||
|
from cog import BasePredictor, Input, Path
|
||||||
|
import os
|
||||||
|
import torch
|
||||||
|
from threading import Thread
|
||||||
|
from transformers import AutoModelForCausalLM
|
||||||
|
from deepseek_vl.utils.io import load_pil_images
|
||||||
|
from deepseek_vl.models import VLChatProcessor, MultiModalityCausalLM
|
||||||
|
|
||||||
|
# Enable faster download speed
|
||||||
|
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"
|
||||||
|
MODEL_NAME = "deepseek-ai/deepseek-vl-7b-base"
|
||||||
|
CACHE_DIR = "checkpoints"
|
||||||
|
|
||||||
|
|
||||||
|
class Predictor(BasePredictor):
|
||||||
|
def setup(self) -> None:
|
||||||
|
"""Load the model into memory to make running multiple predictions efficient"""
|
||||||
|
self.vl_chat_processor: VLChatProcessor = VLChatProcessor.from_pretrained(
|
||||||
|
MODEL_NAME,
|
||||||
|
cache_dir=CACHE_DIR
|
||||||
|
)
|
||||||
|
self.tokenizer = self.vl_chat_processor.tokenizer
|
||||||
|
vl_gpt: MultiModalityCausalLM = AutoModelForCausalLM.from_pretrained(
|
||||||
|
MODEL_NAME,
|
||||||
|
torch_dtype=torch.bfloat16,
|
||||||
|
cache_dir=CACHE_DIR
|
||||||
|
)
|
||||||
|
self.vl_gpt = vl_gpt.to('cuda')
|
||||||
|
|
||||||
|
@torch.inference_mode()
|
||||||
|
def predict(
|
||||||
|
self,
|
||||||
|
image: Path = Input(description="Input image"),
|
||||||
|
prompt: str = Input(description="Input prompt", default="Describe the image"),
|
||||||
|
max_new_tokens: int = Input(description="Maximum number of tokens to generate", default=512)
|
||||||
|
) -> str:
|
||||||
|
"""Run a single prediction on the model"""
|
||||||
|
conversation = [
|
||||||
|
{
|
||||||
|
"role": "User",
|
||||||
|
"content": "<image_placeholder>"+prompt,
|
||||||
|
"images": [str(image)]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"role": "Assistant",
|
||||||
|
"content": ""
|
||||||
|
}
|
||||||
|
]
|
||||||
|
|
||||||
|
# load images and prepare for inputs
|
||||||
|
pil_images = load_pil_images(conversation)
|
||||||
|
prepare_inputs = self.vl_chat_processor(
|
||||||
|
conversations=conversation,
|
||||||
|
images=pil_images,
|
||||||
|
force_batchify=True
|
||||||
|
).to('cuda')
|
||||||
|
|
||||||
|
# run image encoder to get the image embeddings
|
||||||
|
inputs_embeds = self.vl_gpt.prepare_inputs_embeds(**prepare_inputs)
|
||||||
|
|
||||||
|
# run the model to get the response
|
||||||
|
outputs = self.vl_gpt.language_model.generate(
|
||||||
|
inputs_embeds=inputs_embeds,
|
||||||
|
attention_mask=prepare_inputs.attention_mask,
|
||||||
|
pad_token_id=self.tokenizer.eos_token_id,
|
||||||
|
bos_token_id=self.tokenizer.bos_token_id,
|
||||||
|
eos_token_id=self.tokenizer.eos_token_id,
|
||||||
|
max_new_tokens=max_new_tokens,
|
||||||
|
do_sample=False,
|
||||||
|
use_cache=True
|
||||||
|
)
|
||||||
|
|
||||||
|
answer = self.tokenizer.decode(outputs[0].cpu().tolist(), skip_special_tokens=True)
|
||||||
|
return answer
|
Loading…
Reference in New Issue
Block a user