From 40ec6491d4b3c0667e427622fb185878d3e98127 Mon Sep 17 00:00:00 2001 From: Nicola Dall'Asen Date: Wed, 13 Mar 2024 12:32:14 +0100 Subject: [PATCH] load model on detected device and use correct dtype --- cli_chat.py | 6 +++--- deepseek_vl/utils/io.py | 4 +++- inference.py | 8 +++++--- 3 files changed, 11 insertions(+), 7 deletions(-) diff --git a/cli_chat.py b/cli_chat.py index bbea14a..e34a88e 100644 --- a/cli_chat.py +++ b/cli_chat.py @@ -8,7 +8,7 @@ from threading import Thread import torch from transformers import TextIteratorStreamer -from deepseek_vl.utils.io import load_pretrained_model +from deepseek_vl.utils.io import load_pretrained_model, get_device_and_dtype def load_image(image_file): @@ -34,13 +34,13 @@ def get_help_message(image_token): @torch.inference_mode() def response(args, conv, pil_images, tokenizer, vl_chat_processor, vl_gpt, generation_config): - + _, dtype = get_device_and_dtype() prompt = conv.get_prompt() prepare_inputs = vl_chat_processor.__call__( prompt=prompt, images=pil_images, force_batchify=True - ).to(vl_gpt.device) + ).to(vl_gpt.device, dtype=dtype) # run image encoder to get the image embeddings inputs_embeds = vl_gpt.prepare_inputs_embeds(**prepare_inputs) diff --git a/deepseek_vl/utils/io.py b/deepseek_vl/utils/io.py index a160f00..06c1a47 100644 --- a/deepseek_vl/utils/io.py +++ b/deepseek_vl/utils/io.py @@ -52,10 +52,12 @@ def load_pretrained_model(model_path: str): vl_chat_processor: VLChatProcessor = VLChatProcessor.from_pretrained(model_path) tokenizer = vl_chat_processor.tokenizer + device, dtype = get_device_and_dtype() + vl_gpt: MultiModalityCausalLM = AutoModelForCausalLM.from_pretrained( model_path, trust_remote_code=True ) - vl_gpt = vl_gpt.to(torch.bfloat16).cuda().eval() + vl_gpt = vl_gpt.to(device, dtype=dtype).eval() return tokenizer, vl_chat_processor, vl_gpt diff --git a/inference.py b/inference.py index b6fe38c..b22a632 100644 --- a/inference.py +++ b/inference.py @@ -2,7 +2,7 @@ import torch from transformers import AutoModelForCausalLM from deepseek_vl.models import VLChatProcessor, MultiModalityCausalLM -from deepseek_vl.utils.io import load_pil_images +from deepseek_vl.utils.io import load_pil_images, get_device_and_dtype # specify the path to the model @@ -11,7 +11,9 @@ vl_chat_processor: VLChatProcessor = VLChatProcessor.from_pretrained(model_path) tokenizer = vl_chat_processor.tokenizer vl_gpt: MultiModalityCausalLM = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True) -vl_gpt = vl_gpt.to(torch.bfloat16).cuda().eval() + +device, dtype = get_device_and_dtype() +vl_gpt = vl_gpt.to(dtype).to(device).eval() conversation = [ { @@ -32,7 +34,7 @@ prepare_inputs = vl_chat_processor( conversations=conversation, images=pil_images, force_batchify=True -).to(vl_gpt.device) +).to(vl_gpt.device, dtype=dtype) # run image encoder to get the image embeddings inputs_embeds = vl_gpt.prepare_inputs_embeds(**prepare_inputs)