mirror of
https://github.com/deepseek-ai/DeepSeek-V3.git
synced 2025-04-20 02:28:57 -04:00
207 lines
6.9 KiB
Python
207 lines
6.9 KiB
Python
import os
|
|
import shutil
|
|
import logging
|
|
from argparse import ArgumentParser
|
|
from glob import glob
|
|
from pathlib import Path
|
|
from typing import Dict, Tuple, List, Optional
|
|
|
|
from tqdm import tqdm
|
|
import torch
|
|
from safetensors.torch import safe_open, save_file
|
|
|
|
# Configure logging
|
|
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
|
logger = logging.getLogger(__name__)
|
|
|
|
# Type aliases
|
|
TensorMapping = Dict[str, Tuple[str, Optional[int]]]
|
|
|
|
# Configuration mapping with type hints
|
|
MAPPING: TensorMapping = {
|
|
"embed_tokens": ("embed", 0),
|
|
"input_layernorm": ("attn_norm", None),
|
|
"post_attention_layernorm": ("ffn_norm", None),
|
|
"q_proj": ("wq", 0),
|
|
"q_a_proj": ("wq_a", None),
|
|
"q_a_layernorm": ("q_norm", None),
|
|
"q_b_proj": ("wq_b", 0),
|
|
"kv_a_proj_with_mqa": ("wkv_a", None),
|
|
"kv_a_layernorm": ("kv_norm", None),
|
|
"kv_b_proj": ("wkv_b", 0),
|
|
"o_proj": ("wo", 1),
|
|
"gate": ("gate", None),
|
|
"gate_proj": ("w1", 0),
|
|
"down_proj": ("w2", 1),
|
|
"up_proj": ("w3", 0),
|
|
"norm": ("norm", None),
|
|
"lm_head": ("head", 0),
|
|
"scale": ("scale", None),
|
|
}
|
|
|
|
def validate_paths(hf_ckpt_path: str, save_path: str) -> None:
|
|
"""Validate input and output paths."""
|
|
if not os.path.isdir(hf_ckpt_path):
|
|
raise ValueError(f"Input directory {hf_ckpt_path} does not exist")
|
|
|
|
os.makedirs(save_path, exist_ok=True)
|
|
if not os.access(save_path, os.W_OK):
|
|
raise PermissionError(f"No write permission for output directory {save_path}")
|
|
|
|
def process_tensor_name(name: str) -> str:
|
|
"""Process and normalize tensor names."""
|
|
# Remove 'model.' prefix if present
|
|
if name.startswith("model."):
|
|
name = name[len("model."):]
|
|
|
|
# Replace specific patterns
|
|
replacements = {
|
|
"self_attn": "attn",
|
|
"mlp": "ffn",
|
|
"weight_scale_inv": "scale",
|
|
"e_score_correction_bias": "bias"
|
|
}
|
|
|
|
for old, new in replacements.items():
|
|
name = name.replace(old, new)
|
|
|
|
return name
|
|
|
|
def split_tensor(param: torch.Tensor, dim: Optional[int], mp: int, idx: int) -> torch.Tensor:
|
|
"""Split tensor for model parallelism."""
|
|
if dim is None:
|
|
return param
|
|
|
|
if param.size(dim) % mp != 0:
|
|
raise ValueError(f"Dimension {dim} of tensor with shape {param.shape} "
|
|
f"is not divisible by model parallelism factor {mp}")
|
|
|
|
shard_size = param.size(dim) // mp
|
|
return param.narrow(dim, idx * shard_size, shard_size).contiguous()
|
|
|
|
def process_checkpoint_files(
|
|
hf_ckpt_path: str,
|
|
mp: int,
|
|
n_local_experts: int,
|
|
state_dicts: List[Dict[str, torch.Tensor]]
|
|
) -> None:
|
|
"""Process all checkpoint files and populate state dictionaries."""
|
|
for file_path in tqdm(glob(os.path.join(hf_ckpt_path, "*.safetensors")),
|
|
desc="Processing checkpoint files"):
|
|
try:
|
|
with safe_open(file_path, framework="pt", device="cpu") as f:
|
|
for name in tqdm(f.keys(), desc=f"Processing {os.path.basename(file_path)}", leave=False):
|
|
if "model.layers.61" in name:
|
|
logger.debug(f"Skipping layer 61 tensor: {name}")
|
|
continue
|
|
|
|
param = f.get_tensor(name)
|
|
processed_name = process_tensor_name(name)
|
|
|
|
key = processed_name.split(".")[-2]
|
|
if key not in MAPPING:
|
|
raise KeyError(f"Unexpected tensor key: {key} in tensor {name}")
|
|
|
|
new_key, dim = MAPPING[key]
|
|
final_name = processed_name.replace(key, new_key)
|
|
|
|
for i in range(mp):
|
|
if "experts" in final_name and "shared_experts" not in final_name:
|
|
expert_idx = int(final_name.split(".")[-3])
|
|
if not (i * n_local_experts <= expert_idx < (i + 1) * n_local_experts):
|
|
continue
|
|
|
|
split_param = split_tensor(param, dim, mp, i)
|
|
state_dicts[i][final_name] = split_param
|
|
except Exception as e:
|
|
logger.error(f"Error processing file {file_path}: {str(e)}")
|
|
raise
|
|
|
|
def save_output_files(
|
|
state_dicts: List[Dict[str, torch.Tensor]],
|
|
save_path: str,
|
|
mp: int,
|
|
hf_ckpt_path: str
|
|
) -> None:
|
|
"""Save processed state dictionaries and copy token files."""
|
|
for i in tqdm(range(mp), desc="Saving output files"):
|
|
output_file = os.path.join(save_path, f"model{i}-mp{mp}.safetensors")
|
|
save_file(state_dicts[i], output_file, metadata={"format": "pt"})
|
|
|
|
# Copy token-related files
|
|
for file_path in glob(os.path.join(hf_ckpt_path, "*token*")):
|
|
try:
|
|
shutil.copy(file_path, os.path.join(save_path, os.path.basename(file_path)))
|
|
except IOError as e:
|
|
logger.error(f"Error copying file {file_path}: {str(e)}")
|
|
|
|
def main(
|
|
hf_ckpt_path: str,
|
|
save_path: str,
|
|
n_experts: int,
|
|
mp: int
|
|
) -> None:
|
|
"""
|
|
Convert and split model checkpoints for distributed training.
|
|
|
|
Args:
|
|
hf_ckpt_path: Path to HuggingFace format checkpoint directory
|
|
save_path: Output directory for converted checkpoints
|
|
n_experts: Total number of experts in the model
|
|
mp: Model parallelism factor
|
|
"""
|
|
torch.set_num_threads(8)
|
|
validate_paths(hf_ckpt_path, save_path)
|
|
|
|
if n_experts % mp != 0:
|
|
raise ValueError(f"Number of experts {n_experts} must be divisible by model parallelism factor {mp}")
|
|
|
|
n_local_experts = n_experts // mp
|
|
state_dicts = [{} for _ in range(mp)]
|
|
|
|
process_checkpoint_files(hf_ckpt_path, mp, n_local_experts, state_dicts)
|
|
save_output_files(state_dicts, save_path, mp, hf_ckpt_path)
|
|
|
|
logger.info(f"Successfully converted checkpoints. Output saved to {save_path}")
|
|
|
|
if __name__ == "__main__":
|
|
parser = ArgumentParser(description="Convert HuggingFace checkpoints to distributed format")
|
|
parser.add_argument(
|
|
"--hf-ckpt-path",
|
|
type=str,
|
|
required=True,
|
|
help="Path to input HuggingFace checkpoint directory"
|
|
)
|
|
parser.add_argument(
|
|
"--save-path",
|
|
type=str,
|
|
required=True,
|
|
help="Output directory for converted checkpoints"
|
|
)
|
|
parser.add_argument(
|
|
"--n-experts",
|
|
type=int,
|
|
required=True,
|
|
help="Total number of experts in the model"
|
|
)
|
|
parser.add_argument(
|
|
"--model-parallel",
|
|
type=int,
|
|
required=True,
|
|
dest="model_parallel",
|
|
help="Model parallelism factor"
|
|
)
|
|
|
|
args = parser.parse_args()
|
|
|
|
try:
|
|
main(
|
|
args.hf_ckpt_path,
|
|
args.save_path,
|
|
args.n_experts,
|
|
args.model_parallel
|
|
)
|
|
except Exception as e:
|
|
logger.error(f"Conversion failed: {str(e)}")
|
|
raise
|