DeepSeek-V3/inference
Hitesh Yadav bc9459df40 refactor(inference): modularize model architecture for improved maintainability
BREAKING CHANGE: Restructured model.py into dedicated modules under inference/models/

Key Changes:
- Split monolithic model.py into focused, single-responsibility modules:
  - config.py: Model configuration and hyperparameters
  - attention.py: Multi-head Latent Attention (MLA) implementation
  - moe.py: Mixture of Experts components (Gate, Expert, MoE)
  - linear.py: Linear layer variants with parallel processing support
  - __init__.py: Clean public API exports

Benefits:
- Improved code organization and maintainability
- Better separation of concerns
- Enhanced testability of individual components
- Clearer dependency management
- Simplified future modifications and extensions

Migration:
- Update imports to use new module structure
- No functional changes to existing implementations
- Backwards compatible with current model weights
2025-01-05 16:28:10 +05:30
..
configs Release DeepSeek-V3 2024-12-26 19:01:57 +08:00
models refactor(inference): modularize model architecture for improved maintainability 2025-01-05 16:28:10 +05:30
convert.py require model-parallel in convert.py 2024-12-31 18:05:55 +08:00
fp8_cast_bf16.py handle missing scale_inv_name (#2) 2024-12-27 09:34:38 +08:00
generate.py Release DeepSeek-V3 2024-12-26 19:01:57 +08:00
kernel.py Release DeepSeek-V3 2024-12-26 19:01:57 +08:00
model.py torch rmsnorm 2025-01-05 14:33:48 +08:00
requirements.txt Release DeepSeek-V3 2024-12-26 19:01:57 +08:00