mirror of
https://github.com/deepseek-ai/DeepSeek-V3.git
synced 2025-04-19 18:18:57 -04:00
165 lines
6.0 KiB
Python
165 lines
6.0 KiB
Python
import os
|
|
import shutil
|
|
from argparse import ArgumentParser, ArgumentTypeError
|
|
from glob import glob
|
|
from tqdm import tqdm, trange
|
|
|
|
import torch
|
|
from safetensors.torch import safe_open, save_file
|
|
|
|
|
|
mapping = {
|
|
"embed_tokens": ("embed", 0),
|
|
"input_layernorm": ("attn_norm", None),
|
|
"post_attention_layernorm": ("ffn_norm", None),
|
|
"q_proj": ("wq", 0),
|
|
"q_a_proj": ("wq_a", None),
|
|
"q_a_layernorm": ("q_norm", None),
|
|
"q_b_proj": ("wq_b", 0),
|
|
"kv_a_proj_with_mqa": ("wkv_a", None),
|
|
"kv_a_layernorm": ("kv_norm", None),
|
|
"kv_b_proj": ("wkv_b", 0),
|
|
"o_proj": ("wo", 1),
|
|
"gate": ("gate", None),
|
|
"gate_proj": ("w1", 0),
|
|
"down_proj": ("w2", 1),
|
|
"up_proj": ("w3", 0),
|
|
"norm": ("norm", None),
|
|
"lm_head": ("head", 0),
|
|
"scale": ("scale", None),
|
|
}
|
|
|
|
|
|
def validate_positive_integer(value):
|
|
"""
|
|
Helper function to validate that a value is a positive integer.
|
|
"""
|
|
try:
|
|
ivalue = int(value)
|
|
if ivalue <= 0:
|
|
raise ArgumentTypeError(f"{value} is not a positive integer")
|
|
return ivalue
|
|
except ValueError:
|
|
raise ArgumentTypeError(f"{value} is not a valid integer")
|
|
|
|
|
|
def main(hf_ckpt_path, save_path, n_experts, mp):
|
|
"""
|
|
Converts and saves model checkpoint files into a specified format.
|
|
|
|
Args:
|
|
hf_ckpt_path (str): Path to the directory containing the input checkpoint files.
|
|
save_path (str): Path to the directory where the converted checkpoint files will be saved.
|
|
n_experts (int): Total number of experts in the model.
|
|
mp (int): Model parallelism factor.
|
|
|
|
Returns:
|
|
None
|
|
"""
|
|
try:
|
|
torch.set_num_threads(8)
|
|
n_local_experts = n_experts // mp
|
|
state_dicts = [{} for _ in range(mp)]
|
|
|
|
if not os.path.exists(hf_ckpt_path):
|
|
raise FileNotFoundError(f"Checkpoint path '{hf_ckpt_path}' does not exist.")
|
|
|
|
for file_path in tqdm(glob(os.path.join(hf_ckpt_path, "*.safetensors"))):
|
|
if not os.path.isfile(file_path):
|
|
continue
|
|
try:
|
|
with safe_open(file_path, framework="pt", device="cpu") as f:
|
|
for name in f.keys():
|
|
if "model.layers.61" in name:
|
|
continue
|
|
param: torch.Tensor = f.get_tensor(name)
|
|
if name.startswith("model."):
|
|
name = name[len("model.") :]
|
|
name = name.replace("self_attn", "attn")
|
|
name = name.replace("mlp", "ffn")
|
|
name = name.replace("weight_scale_inv", "scale")
|
|
name = name.replace("e_score_correction_bias", "bias")
|
|
key = name.split(".")[-2]
|
|
if key not in mapping:
|
|
raise KeyError(
|
|
f"Unexpected key '{key}' in tensor name '{name}'."
|
|
)
|
|
new_key, dim = mapping[key]
|
|
name = name.replace(key, new_key)
|
|
for i in range(mp):
|
|
new_param = param
|
|
if "experts" in name and "shared_experts" not in name:
|
|
idx = int(name.split(".")[-3])
|
|
if (
|
|
idx < i * n_local_experts
|
|
or idx >= (i + 1) * n_local_experts
|
|
):
|
|
continue
|
|
elif dim is not None:
|
|
if param.size(dim) % mp != 0:
|
|
raise ValueError(
|
|
f"Tensor dimension mismatch for '{name}' (size {param.size(dim)})."
|
|
)
|
|
shard_size = param.size(dim) // mp
|
|
new_param = param.narrow(
|
|
dim, i * shard_size, shard_size
|
|
).contiguous()
|
|
state_dicts[i][name] = new_param
|
|
except Exception as e:
|
|
print(f"Error processing file {file_path}: {e}")
|
|
continue
|
|
|
|
os.makedirs(save_path, exist_ok=True)
|
|
|
|
for i in trange(mp):
|
|
try:
|
|
save_file(
|
|
state_dicts[i],
|
|
os.path.join(save_path, f"model{i}-mp{mp}.safetensors"),
|
|
)
|
|
except Exception as e:
|
|
print(f"Error saving file for model {i}: {e}")
|
|
continue
|
|
|
|
for file_path in glob(os.path.join(hf_ckpt_path, "*token*")):
|
|
try:
|
|
new_file_path = os.path.join(save_path, os.path.basename(file_path))
|
|
shutil.copyfile(file_path, new_file_path)
|
|
except Exception as e:
|
|
print(f"Error copying token file {file_path}: {e}")
|
|
continue
|
|
|
|
except Exception as e:
|
|
print(f"An unexpected error occurred: {e}")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
parser = ArgumentParser()
|
|
parser.add_argument(
|
|
"--hf-ckpt-path", type=str, required=True, help="Path to the checkpoint files."
|
|
)
|
|
parser.add_argument(
|
|
"--save-path", type=str, required=True, help="Path to save the converted files."
|
|
)
|
|
parser.add_argument(
|
|
"--n-experts",
|
|
type=validate_positive_integer,
|
|
required=True,
|
|
help="Total number of experts in the model.",
|
|
)
|
|
parser.add_argument(
|
|
"--model-parallel",
|
|
type=validate_positive_integer,
|
|
required=True,
|
|
help="Model parallelism factor.",
|
|
)
|
|
|
|
args = parser.parse_args()
|
|
|
|
if args.n_experts % args.model_parallel != 0:
|
|
raise ValueError(
|
|
f"Number of experts ({args.n_experts}) must be divisible by model parallelism factor ({args.model_parallel})."
|
|
)
|
|
|
|
main(args.hf_ckpt_path, args.save_path, args.n_experts, args.model_parallel)
|