i have a feeling this might need to be mirrored
Go to file
2025-06-05 05:17:21 +10:00
.github chore: add stale issue management configuration 2025-02-08 15:12:09 +08:00
figures Release DeepSeek-V3 2024-12-26 19:01:57 +08:00
inference feat: Initial MacBook optimisation draft for DeepSeek V3 inference > moving to Zig instead 2025-05-23 01:53:02 +10:00
.gitignore Enhance documentation and update .gitignore for model conversion scripts 2025-01-05 18:18:18 +00:00
dzv3-logo.svg docs: Initial architecture notes for Zig implementation 2025-05-23 03:29:53 +10:00
LICENSE-CODE Release DeepSeek-V3 2024-12-26 19:01:57 +08:00
LICENSE-MODEL Release DeepSeek-V3 2024-12-26 19:01:57 +08:00
MACBOOK_SETUP.md feat: Initial MacBook optimisation draft for DeepSeek V3 inference > moving to Zig instead 2025-05-23 01:53:02 +10:00
README_WEIGHTS.md Release DeepSeek-V3 2024-12-26 19:01:57 +08:00
README-bak.md docs: Tidy README 2025-06-04 11:36:38 +10:00
README-DEEPSEEK_LEGACY.md docs: Initial architecture notes for Zig implementation 2025-05-23 03:29:53 +10:00
README.md docs: Tidy 2025-06-05 05:17:21 +10:00

DeepSeek V3 in Zig

Language: Zig License: DeepSeek Status: Proposal
Performance: High Efficiency Platform: Cross Platform
Feature: SIMD Optimized Architecture: MoE Backend: Customizable

DeepZig V3: A High-Performance LLM Architecture

Overview

A proposal for implementing DeepSeek V3 in Zig to create a high-performance, web-ready LLM inference engine. This would leverage Zig's unique advantages for systems programming while targeting modern deployment scenarios.

Why This Matters

Current LLM inference is dominated by Python/PyTorch, which introduces:

  • Garbage collection pauses during generation
  • Runtime overhead from dynamic dispatch
  • Complex deployment with heavy runtimes
  • Platform lock-in due to dependency complexity

Why Zig?

Performance: Zero-cost abstractions, compile-time optimization, direct hardware access
Simplicity: Single static binary, no runtime dependencies, cross-compilation built-in
Web-First: Native HTTP server, WebAssembly compilation, efficient memory management

Proposed Architecture

┌─────────────────┐    ┌──────────────────┐    ┌─────────────────┐
│   Web Layer     │    │   Core Engine    │    │   Backends      │
│                 │    │                  │    │                 │
│ ├─ HTTP API     │◄──►│ ├─ Transformer   │◄──►│ ├─ CPU (SIMD)   │
│ ├─ WebSocket    │    │ ├─ Attention     │    │ ├─ Metal (macOS)│
│ ├─ Rate Limit   │    │ ├─ MoE Routing   │    │ ├─ CUDA (Linux) │
│ └─ Auth         │    │ └─ Tokenizer     │    │ └─ WebGPU       │
└─────────────────┘    └──────────────────┘    └─────────────────┘

Proposed Web API

Target Endpoints

  • POST /v1/chat/completions - OpenAI-compatible chat API
  • POST /v1/completions - Text completion
  • GET /v1/models - List available models
  • GET /health - Service health check
  • WebSocket /ws - Streaming inference

Deployment Vision

  • Static binaries - Single file deployment, no dependencies
  • Direct VPS deployment - Copy binary and run with systemd
  • Edge devices - ARM/RISC-V cross-compilation
  • Serverless functions - Minimal cold start with static linking
  • WebAssembly - Browser inference without additional runtime

Implementation Plan

Phase 1: Foundation

  • Set up Zig project structure
  • Implement basic tensor operations with SIMD
  • Create memory management system (arena allocators)
  • Build HTTP server framework

Phase 2: Core Model

  • Implement transformer layers
  • Add Multi-Head Latent Attention (MLA)
  • Build Mixture of Experts (MoE) routing
  • Create tokenizer integration

Phase 3: Backends

  • Optimize CPU backend with AVX/NEON
  • Integrate Metal for Apple Silicon
  • Add CUDA support for NVIDIA GPUs
  • Implement WebGPU for browsers

Phase 4: Web Integration

  • Complete HTTP API implementation
  • Add WebSocket streaming
  • Build authentication/rate limiting
  • Create deployment tooling

Expected Benefits

Aspect Current (PyTorch) Proposed (Zig)
Cold start 10-30s < 2s
Memory usage 20-40GB < 16GB
Dependencies ~2GB runtime Single binary
Deployment Complex Copy & run

Technical Challenges

  • Model Complexity: DeepSeek V3's MoE architecture requires careful memory management
  • Backend Integration: Need efficient FFI to CUDA/Metal while maintaining performance
  • Web Scale: Handle concurrent requests without blocking inference
  • Accuracy: Match PyTorch numerical precision

Platform-Specific Opportunities

Apple Silicon (M-Series)

  • Metal Performance Shaders integration for matrix operations
  • AMX instruction set access for accelerated linear algebra
  • Unified memory architecture exploitation for zero-copy transfers
  • Power efficiency tuning across P and E cores

x86_64 Architecture

  • AVX-512 vectorization with masked operations
  • Cache-friendly memory layouts for L1/L2/L3 optimization
  • NUMA-aware allocation and thread assignment
  • Dynamic dispatch based on runtime CPU feature detection

NVIDIA GPUs

  • CUDA integration via efficient FFI bindings
  • Tensor Core utilization for mixed-precision operations
  • Custom kernels for attention mechanisms
  • Memory pooling for reduced allocation overhead

Getting Started

Current Status: This repository contains the original Python DeepSeek V3 implementation. The Zig implementation is proposed future work.

For the Current Python Implementation:

# Clone this repository
git clone https://github.com/[current-repo-path]
cd DeepSeek-V3-Zig

# Follow existing Python setup instructions
# (see original DeepSeek V3 documentation)

For the Proposed Zig Implementation:

# This would be the future workflow once implemented:

# 1. Set up new Zig project structure
zig init-exe deepseek-v3-zig

# 2. Implement core components
# - Tensor operations with SIMD
# - HTTP server framework  
# - Model architecture

# 3. Test and benchmark
zig build test
zig build bench

# 4. Run web server
zig build run -- --port 8080

Want to contribute to making this real? See Seeking Contributors below.

Development Approach

Following established Zig patterns:

  • Arena allocators for request-scoped memory
  • Error unions for explicit error handling
  • Comptime generics for zero-cost abstractions
  • SIMD vectors for numerical computation

Reference: Zig Cookbook for implementation patterns.

Seeking Contributors

This is an ambitious project that would benefit from expertise in:

  • Zig systems programming
  • GPU kernel optimization (CUDA/Metal)
  • ML model implementation
  • Web server development
  • Performance optimization
  • Hardware-software co-design
  • Novel inference techniques (Speculative decoding, quantization)

Project Timeline

  • Foundation and basic tensor ops
  • Core transformer implementation
  • Backend optimization and web API
  • Testing, benchmarking, deployment tools

Key Questions

Q: Why not just optimize PyTorch?
A: PyTorch's Python overhead and GC pauses are fundamental limitations. Zig offers zero-cost abstractions, superior error handling, and deterministic performance.

Q: How will this compare to llama.cpp?
A: Similar performance goals, but with built-in web API, better memory management, and focus on DeepSeek V3's specific MoE architecture.

Q: What about ONNX/TensorRT/ZML etc?
A: Those are inference runtimes, not development frameworks / LLM frameworks. This project enables rapid iteration and custom optimization for research.


References


Status: 🎯 Seeking feedback & idea expansion
Vision: Foundation for advanced AI reasoning research