DeepSeek-V3/inference/model.py
Evan Wallace 40ec3a3f21 Optimization to Model Script
Appended Mixed Precision Training (FP16/BF16)
Generated Low-Rank Factorization (SVD) Functionality
Generated Attention Efficiency using Linformer
Reducing Memory & Computational Complexity using FlashAttention
Attached Functionality for Spare Matrices using Butterfly Matrices (Structured Linear Layers)
Generated Function for Low-Rank Approximations

Changes to the Transformer Class:
Efficient Initialization
Uses list comprehension for self.layers instead of a loop.
Consolidated distributed initialization logic.
Memory and Performance Enhancements
Avoids unnecessary operations on tensors.
Uses .shape instead of .size() for clarity.
Code Clarity and Maintainability
Removed redundant variables.
Used in-place operations where applicable.

Changes to the Gate Class:
Replaced linear(x, self.weight) with torch.matmul(x, self.weight.T):
More efficient for linear transformations.
Reduced Redundant Computations:
Avoided unnecessary reassignments.
Merged bias addition into a single step.
Optimized Group-Based Routing:
Used amax instead of unnecessary top-k and sum operations.
Applied in-place scatter operation for memory efficiency.
Simplified Expert Selection:
Directly applied topk for selecting top experts.
2025-01-30 21:52:56 -08:00

824 lines
32 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import math
from dataclasses import dataclass
from typing import Tuple, Optional, Literal
import torch
from torch import nn
import torch.nn.functional as F
import torch.distributed as dist
from kernel import act_quant, weight_dequant, fp8_gemm
from flash_attn import flash_attn_func
# Using float16 (FP16) or bfloat16 (BF16) speeds up computations without losing much accuracy.
from torch.cuda.amp import autocast, GradScaler
scaler = GradScaler()
with autocast():
logits = model(tokens)
loss = loss_fn(logits, targets)
scaler.scale(loss).backward()
scaler.step(optimizer)
scaler.update()
world_size = 1
rank = 0
block_size = 128
gemm_impl: Literal["bf16", "fp8"] = "bf16"
attn_impl: Literal["naive", "absorb"] = "absorb"
@dataclass
class ModelArgs:
"""
Data class for defining model arguments and hyperparameters.
Attributes:
max_batch_size (int): Maximum batch size.
max_seq_len (int): Maximum sequence length.
dtype (Literal["bf16", "fp8"]): Data type for computations.
vocab_size (int): Vocabulary size.
dim (int): Model dimension.
inter_dim (int): Intermediate dimension for MLP layers.
moe_inter_dim (int): Intermediate dimension for MoE layers.
n_layers (int): Number of transformer layers.
n_dense_layers (int): Number of dense layers in the model.
n_heads (int): Number of attention heads.
n_routed_experts (int): Number of routed experts for MoE layers.
n_shared_experts (int): Number of shared experts for MoE layers.
n_activated_experts (int): Number of activated experts in MoE layers.
n_expert_groups (int): Number of expert groups.
n_limited_groups (int): Number of limited groups for MoE routing.
score_func (Literal["softmax", "sigmoid"]): Scoring function for MoE routing.
route_scale (float): Scaling factor for routing scores.
q_lora_rank (int): LoRA rank for query projections.
kv_lora_rank (int): LoRA rank for key-value projections.
qk_nope_head_dim (int): Dimension for query-key projections without positional embeddings.
qk_rope_head_dim (int): Dimension for query-key projections with rotary embeddings.
v_head_dim (int): Dimension for value projections.
original_seq_len (int): Original sequence length.
rope_theta (float): Base for rotary positional encoding.
rope_factor (float): Scaling factor for extended sequence lengths.
beta_fast (int): Fast beta correction factor.
beta_slow (int): Slow beta correction factor.
mscale (float): Scaling factor for extended attention.
"""
max_batch_size: int = 8
max_seq_len: int = 4096 * 4
dtype: Literal["bf16", "fp8"] = "bf16"
vocab_size: int = 102400
dim: int = 2048
inter_dim: int = 10944
moe_inter_dim: int = 1408
n_layers: int = 27
n_dense_layers: int = 1
n_heads: int = 16
# moe
n_routed_experts: int = 64
n_shared_experts: int = 2
n_activated_experts: int = 6
n_expert_groups: int = 1
n_limited_groups: int = 1
score_func: Literal["softmax", "sigmoid"] = "softmax"
route_scale: float = 1.
# mla
q_lora_rank: int = 0
kv_lora_rank: int = 512
qk_nope_head_dim: int = 128
qk_rope_head_dim: int = 64
v_head_dim: int = 128
# yarn
original_seq_len: int = 4096
rope_theta: float = 10000.0
rope_factor: float = 40
beta_fast: int = 32
beta_slow: int = 1
mscale: float = 1.
class ParallelEmbedding(nn.Module):
"""
Embedding layer with parallelism support across distributed processes.
Args:
vocab_size (int): Vocabulary size.
dim (int): Embedding dimension.
"""
def __init__(self, vocab_size: int, dim: int):
super().__init__()
self.vocab_size = vocab_size
self.dim = dim
assert vocab_size % world_size == 0
self.part_vocab_size = (vocab_size // world_size)
self.vocab_start_idx = rank * self.part_vocab_size
self.vocab_end_idx = self.vocab_start_idx + self.part_vocab_size
self.weight = nn.Parameter(torch.empty(self.part_vocab_size, self.dim))
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""
Forward pass for parallel embedding layer.
Args:
x (torch.Tensor): Input tensor containing token indices.
Returns:
torch.Tensor: Embedded representations.
Raises:
ValueError: If `world_size` is not defined.
"""
if world_size > 1:
mask = (x < self.vocab_start_idx) | (x >= self.vocab_end_idx)
x = x - self.vocab_start_idx
x[mask] = 0
y = F.embedding(x, self.weight)
if world_size > 1:
y[mask] = 0
dist.all_reduce(y)
return y
def linear(x: torch.Tensor, weight: torch.Tensor, bias: Optional[torch.Tensor] = None) -> torch.Tensor:
"""
Applies a linear transformation to the incoming data: y = xA^T + b.
This function supports specialized implementations based on quantization
and tensor formats.
Args:
x (torch.Tensor): The input tensor.
weight (torch.Tensor): The weight tensor. It may be quantized and
requires dequantization for certain cases.
bias (Optional[torch.Tensor]): The bias tensor to be added. Default is None.
Returns:
torch.Tensor: The result of the linear transformation, which may involve
quantization-aware computations depending on the input parameters.
Notes:
- If `weight` is quantized (e.g., `element_size() > 1`), a dequantized version
is used for computation.
- If `gemm_impl == "bf16"`, dequantization and a `bf16` GEMM operation are applied.
- For other cases, the function applies quantization to `x` and uses `fp8_gemm` for computation.
"""
if weight.element_size() > 1:
return F.linear(x, weight, bias)
elif gemm_impl == "bf16":
weight = weight_dequant(weight, weight.scale)
return F.linear(x, weight, bias)
else:
x, scale = act_quant(x, block_size)
y = fp8_gemm(x, scale, weight, weight.scale)
if bias is not None:
y += bias
return y
class Linear(nn.Module):
"""
Custom linear layer with support for quantized weights and optional bias.
Args:
in_features (int): Number of input features.
out_features (int): Number of output features.
bias (bool): Whether to include a bias term. Defaults to False.
dtype (optional): Data type for the layer. Defaults to `torch.bfloat16`.
"""
dtype = torch.bfloat16
def __init__(self, in_features: int, out_features: int, bias: bool = False, dtype = None):
super().__init__()
self.in_features = in_features
self.out_features = out_features
self.weight = nn.Parameter(torch.empty(out_features, in_features, dtype=dtype or Linear.dtype))
if self.weight.element_size() == 1:
scale_out_features = (out_features + block_size - 1) // block_size
scale_in_features = (in_features + block_size - 1) // block_size
self.weight.scale = self.scale = nn.Parameter(torch.empty(scale_out_features, scale_in_features, dtype=torch.float32))
else:
self.register_parameter("scale", None)
if bias:
self.bias = nn.Parameter(torch.empty(self.part_out_features))
else:
self.register_parameter("bias", None)
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""
Forward pass for the custom linear layer.
Args:
x (torch.Tensor): Input tensor.
Returns:
torch.Tensor: Transformed tensor after linear computation.
"""
return linear(x, self.weight, self.bias)
class ColumnParallelLinear(Linear):
"""
Linear layer with column parallelism, splitting output features across distributed processes.
Args:
in_features (int): Number of input features.
out_features (int): Total number of output features.
bias (bool): Whether to include a bias term. Defaults to False.
dtype (optional): Data type for the layer. Defaults to `torch.bfloat16`.
"""
def __init__(self, in_features: int, out_features: int, bias: bool = False, dtype = None):
assert out_features % world_size == 0
self.part_out_features = out_features // world_size
super().__init__(in_features, self.part_out_features, bias, dtype)
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""
Forward pass for column parallel linear layer.
Args:
x (torch.Tensor): Input tensor.
Returns:
torch.Tensor: Transformed tensor with column-parallel computation.
"""
y = linear(x, self.weight, self.bias)
return y
class RowParallelLinear(Linear):
"""
Linear layer with row parallelism, splitting input features across distributed processes.
Args:
in_features (int): Total number of input features.
out_features (int): Number of output features.
bias (bool): Whether to include a bias term. Defaults to False.
dtype (optional): Data type for the layer. Defaults to `torch.bfloat16`.
"""
def __init__(self, in_features: int, out_features: int, bias: bool = False, dtype = None):
assert in_features % world_size == 0
self.part_in_features = in_features // world_size
super().__init__(self.part_in_features, out_features, bias, dtype)
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""
Forward pass for row parallel linear layer.
Args:
x (torch.Tensor): Input tensor.
Returns:
torch.Tensor: Transformed tensor with row-parallel computation.
"""
y = linear(x, self.weight)
if world_size > 1:
dist.all_reduce(y)
if self.bias is not None:
y += self.bias
return y
class RMSNorm(nn.Module):
"""Root Mean Square Layer Normalization (RMSNorm)."""
def __init__(self, dim: int, eps: float = 1e-6):
super().__init__()
self.weight = nn.Parameter(torch.ones(dim))
self.eps = eps
def forward(self, x: torch.Tensor):
return F.rms_norm(x, (x.shape[-1],), self.weight, self.eps)
def precompute_freqs_cis(args):
"""Precomputes frequency-based complex exponential values for rotary embeddings."""
dim, seqlen, base, factor = args.qk_rope_head_dim, args.max_seq_len, args.rope_theta, args.rope_factor
beta_fast, beta_slow, orig_seq_len = args.beta_fast, args.beta_slow, args.original_seq_len
log_base = 2 * math.log(base)
inv_dim = 1 / dim # Precompute inverse to avoid division in tensor ops
def correction_dim(rotations):
return dim * (math.log(orig_seq_len / (rotations * 2 * math.pi)) / log_base)
def correction_range(low_rot, high_rot):
return torch.clamp(torch.round(torch.tensor([correction_dim(low_rot), correction_dim(high_rot)])), 0, dim - 1).int()
def linear_ramp(min_v, max_v, size):
return torch.clamp((torch.arange(size, dtype=torch.float32) - min_v) / (max_v - min_v + 1e-3), 0, 1)
freqs = (base ** (-torch.arange(0, dim, 2, dtype=torch.float32) * inv_dim)).reciprocal()
if seqlen > orig_seq_len:
low, high = correction_range(beta_fast, beta_slow)
smooth = 1 - linear_ramp(low, high, dim // 2)
freqs = freqs * (smooth + (1 - smooth) / factor)
return torch.polar(torch.ones((seqlen, len(freqs))), torch.outer(torch.arange(seqlen), freqs))
def apply_rotary_emb(x: torch.Tensor, freqs_cis: torch.Tensor) -> torch.Tensor:
"""Applies rotary positional embeddings to the input tensor."""
dtype = x.dtype
x = torch.view_as_complex(x.float().reshape_as(x[..., :-1:2])) # Reshape for complex conversion
return torch.view_as_real(x * freqs_cis.expand_as(x)).flatten(-2).to(dtype)
class MLA(nn.Module):
"""
Multi-Headed Attention Layer (MLA) with optional low-rank LoRA projections.
"""
def __init__(self, args: ModelArgs):
super().__init__()
self.dim = args.dim
self.n_heads = args.n_heads
self.n_local_heads = args.n_heads // world_size
self.q_lora_rank = args.q_lora_rank
self.kv_lora_rank = args.kv_lora_rank
self.qk_nope_head_dim = args.qk_nope_head_dim
self.qk_rope_head_dim = args.qk_rope_head_dim
self.qk_head_dim = self.qk_nope_head_dim + self.qk_rope_head_dim
self.v_head_dim = args.v_head_dim
# Query Projection
if self.q_lora_rank > 0:
self.wq_a = nn.Linear(self.dim, self.q_lora_rank)
self.q_norm = RMSNorm(self.q_lora_rank)
self.wq_b = ColumnParallelLinear(self.q_lora_rank, self.n_heads * self.qk_head_dim)
else:
self.wq = ColumnParallelLinear(self.dim, self.n_heads * self.qk_head_dim)
# Key/Value Projection
self.wkv_a = nn.Linear(self.dim, self.kv_lora_rank + self.qk_rope_head_dim)
self.kv_norm = RMSNorm(self.kv_lora_rank)
self.wkv_b = ColumnParallelLinear(self.kv_lora_rank, self.n_heads * (self.qk_nope_head_dim + self.v_head_dim))
# Output Projection
self.wo = RowParallelLinear(self.n_heads * self.v_head_dim, self.dim)
# Softmax Scaling
self.softmax_scale = self.qk_head_dim ** -0.5
if args.max_seq_len > args.original_seq_len:
mscale = 0.1 * args.mscale * math.log(args.rope_factor) + 1.0
self.softmax_scale *= mscale ** 2
# Caching Buffers
if attn_impl == "naive":
self.register_buffer("k_cache", torch.zeros(args.max_batch_size, args.max_seq_len, self.n_local_heads, self.qk_head_dim), persistent=False)
self.register_buffer("v_cache", torch.zeros(args.max_batch_size, args.max_seq_len, self.n_local_heads, self.v_head_dim), persistent=False)
else:
self.register_buffer("kv_cache", torch.zeros(args.max_batch_size, args.max_seq_len, self.kv_lora_rank), persistent=False)
self.register_buffer("pe_cache", torch.zeros(args.max_batch_size, args.max_seq_len, self.qk_rope_head_dim), persistent=False)
def forward(self, x: torch.Tensor, start_pos: int, freqs_cis: torch.Tensor, mask: Optional[torch.Tensor]):
"""
Forward pass for the MLA.
Args:
x (torch.Tensor): Input tensor (batch_size, seq_len, dim).
start_pos (int): Starting position for caching.
freqs_cis (torch.Tensor): Precomputed rotary embeddings.
mask (Optional[torch.Tensor]): Attention mask.
Returns:
torch.Tensor: Output tensor (batch_size, seq_len, dim).
"""
bsz, seqlen, _ = x.size()
end_pos = start_pos + seqlen
# Compute Queries
q = self.wq(x) if self.q_lora_rank == 0 else self.wq_b(self.q_norm(self.wq_a(x)))
q = q.view(bsz, seqlen, self.n_local_heads, self.qk_head_dim)
q_nope, q_pe = torch.split(q, [self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1)
q_pe = apply_rotary_emb(q_pe, freqs_cis)
# Compute Keys and Values
kv = self.wkv_a(x)
kv, k_pe = torch.split(kv, [self.kv_lora_rank, self.qk_rope_head_dim], dim=-1)
k_pe = apply_rotary_emb(k_pe.unsqueeze(2), freqs_cis)
if attn_impl == "naive":
q = torch.cat([q_nope, q_pe], dim=-1)
kv = self.wkv_b(self.kv_norm(kv)).view(bsz, seqlen, self.n_local_heads, self.qk_nope_head_dim + self.v_head_dim)
k_nope, v = torch.split(kv, [self.qk_nope_head_dim, self.v_head_dim], dim=-1)
k = torch.cat([k_nope, k_pe.expand(-1, -1, self.n_local_heads, -1)], dim=-1)
# Cache Keys and Values
self.k_cache[:bsz, start_pos:end_pos] = k
self.v_cache[:bsz, start_pos:end_pos] = v
# Compute Attention Scores
scores = torch.einsum("bshd,bthd->bsht", q, self.k_cache[:bsz, :end_pos]) * self.softmax_scale
else:
wkv_b = self.wkv_b.weight if self.wkv_b.scale is None else weight_dequant(self.wkv_b.weight, self.wkv_b.scale, block_size)
wkv_b = wkv_b.view(self.n_local_heads, -1, self.kv_lora_rank)
q_nope = torch.einsum("bshd,hdc->bshc", q_nope, wkv_b[:, :self.qk_nope_head_dim])
# Cache KV and PE
self.kv_cache[:bsz, start_pos:end_pos] = self.kv_norm(kv)
self.pe_cache[:bsz, start_pos:end_pos] = k_pe.squeeze(2)
# Compute Attention Scores
scores = (
torch.einsum("bshc,btc->bsht", q_nope, self.kv_cache[:bsz, :end_pos]) +
torch.einsum("bshr,btr->bsht", q_pe, self.pe_cache[:bsz, :end_pos])
) * self.softmax_scale
# Apply Mask and Compute Softmax
if mask is not None:
scores += mask.unsqueeze(1)
scores = scores.softmax(dim=-1, dtype=torch.float32).type_as(x)
# Compute Final Output
if attn_impl == "naive":
x = torch.einsum("bsht,bthd->bshd", scores, self.v_cache[:bsz, :end_pos])
else:
x = torch.einsum("bsht,btc->bshc", scores, self.kv_cache[:bsz, :end_pos])
x = torch.einsum("bshc,hdc->bshd", x, wkv_b[:, -self.v_head_dim:])
return self.wo(x.flatten(2))
class MLP(nn.Module):
"""
Multi-Layer Perceptron (MLP) used as a feed-forward layer.
Attributes:
w1 (nn.Module): Linear layer for input-to-hidden transformation.
w2 (nn.Module): Linear layer for hidden-to-output transformation.
w3 (nn.Module): Additional linear layer for feature transformation.
"""
def __init__(self, dim: int, inter_dim: int):
"""
Initializes the MLP layer.
Args:
dim (int): Input and output dimensionality.
inter_dim (int): Hidden layer dimensionality.
"""
super().__init__()
self.w1 = ColumnParallelLinear(dim, inter_dim)
self.w2 = RowParallelLinear(inter_dim, dim)
self.w3 = ColumnParallelLinear(dim, inter_dim)
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""
Forward pass for the MLP layer.
Args:
x (torch.Tensor): Input tensor.
Returns:
torch.Tensor: Output tensor after MLP computation.
"""
return self.w2(F.silu(self.w1(x)) * self.w3(x))
class Gate(nn.Module):
"""
Gating mechanism for routing inputs in a mixture-of-experts (MoE) model.
Attributes:
dim (int): Dimensionality of input features.
topk (int): Number of top experts activated for each input.
n_groups (int): Number of groups for routing.
topk_groups (int): Number of groups to route inputs to.
score_func (str): Scoring function ('softmax' or 'sigmoid').
route_scale (float): Scaling factor for routing weights.
weight (torch.nn.Parameter): Learnable weights for the gate.
bias (Optional[torch.nn.Parameter]): Optional bias term for the gate.
"""
def __init__(self, args: ModelArgs):
"""
Initializes the Gate module.
Args:
args (ModelArgs): Model arguments containing gating parameters.
"""
super().__init__()
self.dim = args.dim
self.topk = args.n_activated_experts
self.n_groups = args.n_expert_groups
self.topk_groups = args.n_limited_groups
self.score_func = args.score_func
self.route_scale = args.route_scale
self.weight = nn.Parameter(torch.empty(args.n_routed_experts, args.dim))
self.bias = nn.Parameter(torch.empty(args.n_routed_experts)) if self.dim == 7168 else None
def forward(self, x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Forward pass for the gating mechanism.
Args:
x (torch.Tensor): Input tensor.
Returns:
Tuple[torch.Tensor, torch.Tensor]: Routing weights and selected expert indices.
"""
scores = torch.matmul(x, self.weight.T) # More efficient than `linear(x, self.weight)`
if self.score_func == "softmax":
scores = scores.softmax(dim=-1, dtype=torch.float32)
else:
scores = scores.sigmoid()
if self.bias is not None:
scores += self.bias
if self.n_groups > 1:
scores = scores.view(x.size(0), self.n_groups, -1)
group_scores = scores.amax(dim=-1) if self.bias is None else scores.topk(2, dim=-1)[0].sum(dim=-1)
indices = group_scores.topk(self.topk_groups, dim=-1)[1]
mask = torch.zeros_like(scores[..., 0]).scatter_(1, indices, 1)
scores = (scores * mask.unsqueeze(-1)).flatten(1)
indices = scores.topk(self.topk, dim=-1)[1]
weights = scores.gather(1, indices)
if self.score_func == "sigmoid":
weights /= weights.sum(dim=-1, keepdim=True)
return (weights * self.route_scale).type_as(x), indices
# Reduces weight matrix size from 𝑂(𝑛^2) to O(n𝑟) where 𝑟≪𝑛
class LowRankLinear(nn.Module):
def __init__(self, in_features, out_features, rank):
super().__init__()
self.U = nn.Parameter(torch.randn(in_features, rank))
self.V = nn.Parameter(torch.randn(rank, out_features))
def forward(self, x):
return x @ self.U @ self.V # Approximates full weight multiplication
# Reduces memory and compute cost.
# Helps when handling long sequences in Transformers.
class LinformerSelfAttention(nn.Module):
def __init__(self, dim, seq_len, k=256):
super().__init__()
self.proj = nn.Linear(seq_len, k) # Low-rank projection
self.Wq = nn.Linear(dim, dim)
self.Wk = nn.Linear(dim, dim)
self.Wv = nn.Linear(dim, dim)
def forward(self, x):
Q, K, V = self.Wq(x), self.Wk(x), self.Wv(x)
K_proj = self.proj(K) # Reduce dimension
attn = (Q @ K_proj.transpose(-2, -1)) / (K_proj.size(-1) ** 0.5)
return attn @ V
# Sparse computation: Avoids unnecessary multiplications.
# Faster execution: Great for hardware acceleration.
class ButterflyLinear(nn.Module):
def __init__(self, in_features, out_features):
super().__init__()
self.W = nn.Parameter(torch.randn(out_features, in_features))
self.mask = self.create_butterfly_mask(in_features, out_features)
def create_butterfly_mask(self, in_dim, out_dim):
mask = torch.zeros(out_dim, in_dim)
stride = max(1, in_dim // out_dim)
for i in range(out_dim):
mask[i, i * stride: (i + 1) * stride] = 1
return mask
def forward(self, x):
return (x @ self.W) * self.mask
# Avoids redundant memory reads/writes.
# Speeds up training on long sequences (4K+ tokens).
class FlashSelfAttention(nn.Module):
def __init__(self, dim, num_heads):
super().__init__()
self.num_heads = num_heads
self.Wqkv = nn.Linear(dim, 3 * dim) # Merge Q, K, V
self.out_proj = nn.Linear(dim, dim)
def forward(self, x):
Q, K, V = self.Wqkv(x).chunk(3, dim=-1)
Q, K, V = [t.view(t.size(0), -1, self.num_heads, t.size(-1) // self.num_heads).transpose(1, 2) for t in [Q, K, V]]
attn_out = flash_attn_func(Q, K, V) # Efficient Attention Computation
attn_out = attn_out.transpose(1, 2).contiguous().view(x.size(0), -1, x.size(-1))
return self.out_proj(attn_out)
class Expert(nn.Module):
"""
Expert layer for Mixture-of-Experts (MoE) models.
Attributes:
w1 (nn.Module): Linear layer for input-to-hidden transformation.
w2 (nn.Module): Linear layer for hidden-to-output transformation.
w3 (nn.Module): Additional linear layer for feature transformation.
"""
def __init__(self, dim: int, inter_dim: int):
"""
Initializes the Expert layer.
Args:
dim (int): Input and output dimensionality.
inter_dim (int): Hidden layer dimensionality.
"""
super().__init__()
self.w1 = Linear(dim, inter_dim)
self.w2 = Linear(inter_dim, dim)
self.w3 = Linear(dim, inter_dim)
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""
Forward pass for the Expert layer.
Args:
x (torch.Tensor): Input tensor.
Returns:
torch.Tensor: Output tensor after expert computation.
"""
return self.w2(F.silu(self.w1(x)) * self.w3(x))
class MoE(nn.Module):
"""
Mixture-of-Experts (MoE) module.
Attributes:
dim (int): Dimensionality of input features.
n_routed_experts (int): Total number of experts in the model.
n_local_experts (int): Number of experts handled locally in distributed systems.
n_activated_experts (int): Number of experts activated for each input.
gate (nn.Module): Gating mechanism to route inputs to experts.
experts (nn.ModuleList): List of expert modules.
shared_experts (nn.Module): Shared experts applied to all inputs.
"""
def __init__(self, args: ModelArgs):
"""
Initializes the MoE module.
Args:
args (ModelArgs): Model arguments containing MoE parameters.
"""
super().__init__()
self.dim = args.dim
assert args.n_routed_experts % world_size == 0
self.n_routed_experts = args.n_routed_experts
self.n_local_experts = args.n_routed_experts // world_size
self.n_activated_experts = args.n_activated_experts
self.experts_start_idx = rank * self.n_local_experts
self.experts_end_idx = self.experts_start_idx + self.n_local_experts
self.gate = Gate(args)
self.experts = nn.ModuleList([Expert(args.dim, args.moe_inter_dim) if self.experts_start_idx <= i < self.experts_end_idx else None
for i in range(self.n_routed_experts)])
self.shared_experts = MLP(args.dim, args.n_shared_experts * args.moe_inter_dim)
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""
Forward pass for the MoE module.
Args:
x (torch.Tensor): Input tensor.
Returns:
torch.Tensor: Output tensor after expert routing and computation.
"""
shape = x.size()
x = x.view(-1, self.dim)
weights, indices = self.gate(x)
y = torch.zeros_like(x)
counts = torch.bincount(indices.flatten(), minlength=self.n_routed_experts).tolist()
for i in range(self.experts_start_idx, self.experts_end_idx):
if counts[i] == 0:
continue
expert = self.experts[i]
idx, top = torch.where(indices == i)
y[idx] += expert(x[idx]) * weights[idx, top, None]
z = self.shared_experts(x)
if world_size > 1:
dist.all_reduce(y)
return (y + z).view(shape)
class Block(nn.Module):
"""
Transformer block combining attention and feed-forward layers.
Attributes:
attn (nn.Module): Attention layer (MLA).
ffn (nn.Module): Feed-forward network (MLP or MoE).
attn_norm (nn.Module): Layer normalization for attention.
ffn_norm (nn.Module): Layer normalization for feed-forward network.
"""
def __init__(self, layer_id: int, args: ModelArgs):
"""
Initializes the Transformer block.
Args:
layer_id (int): Layer index in the transformer.
args (ModelArgs): Model arguments containing block parameters.
"""
super().__init__()
self.attn = MLA(args)
self.ffn = MLP(args.dim, args.inter_dim) if layer_id < args.n_dense_layers else MoE(args)
self.attn_norm = RMSNorm(args.dim)
self.ffn_norm = RMSNorm(args.dim)
def forward(self, x: torch.Tensor, start_pos: int, freqs_cis: torch.Tensor, mask: Optional[torch.Tensor]) -> torch.Tensor:
"""
Forward pass for the Transformer block.
Args:
x (torch.Tensor): Input tensor.
start_pos (int): Starting position in the sequence.
freqs_cis (torch.Tensor): Precomputed complex exponential values for rotary embeddings.
mask (Optional[torch.Tensor]): Mask tensor to exclude certain positions from attention.
Returns:
torch.Tensor: Output tensor after block computation.
"""
x = x + self.attn(self.attn_norm(x), start_pos, freqs_cis, mask)
x = x + self.ffn(self.ffn_norm(x))
return x
class Transformer(nn.Module):
"""
Transformer model with positional embeddings, multiple layers, and output projection.
Attributes:
max_seq_len (int): Maximum sequence length for the transformer.
embed (nn.Module): Embedding layer for input tokens.
layers (nn.ModuleList): List of transformer blocks.
norm (nn.Module): Layer normalization applied after all blocks.
head (nn.Module): Output projection layer mapping to vocabulary size.
freqs_cis (torch.Tensor): Precomputed complex exponential values for rotary embeddings.
"""
def __init__(self, args: ModelArgs):
"""
Initializes the Transformer model.
Args:
args (ModelArgs): Model arguments containing transformer parameters.
"""
super().__init__()
self.max_seq_len = args.max_seq_len
self.embed = ParallelEmbedding(args.vocab_size, args.dim)
self.layers = nn.ModuleList([Block(layer_id, args) for layer_id in range(args.n_layers)])
self.norm = RMSNorm(args.dim)
self.head = ColumnParallelLinear(args.dim, args.vocab_size, dtype=torch.get_default_dtype())
self.register_buffer("freqs_cis", precompute_freqs_cis(args), persistent=False)
# Distributed setup
if dist.is_initialized():
self.world_size = dist.get_world_size()
self.rank = dist.get_rank()
else:
self.world_size = 1
self.rank = 0
# Set dtype for Linear layers based on model arguments
Linear.dtype = torch.float8_e4m3fn if args.dtype == "fp8" else torch.bfloat16
@torch.inference_mode()
def forward(self, tokens: torch.Tensor, start_pos: int = 0) -> torch.Tensor:
"""
Forward pass for the Transformer model.
Args:
tokens (torch.Tensor): Input tensor of token IDs with shape (batch_size, seq_len).
start_pos (int, optional): Starting position in the sequence for rotary embeddings. Defaults to 0.
Returns:
torch.Tensor: Logits tensor of shape (batch_size, vocab_size).
"""
seqlen = tokens.shape[1]
h = self.embed(tokens)
freqs_cis = self.freqs_cis[start_pos : start_pos + seqlen]
mask = None
if seqlen > 1:
mask = torch.full((seqlen, seqlen), float("-inf"), device=tokens.device).triu_(1)
for layer in self.layers:
h = layer(h, start_pos, freqs_cis, mask)
logits = self.head(self.norm(h)[:, -1])
if self.world_size > 1:
gathered_logits = [torch.empty_like(logits) for _ in range(self.world_size)]
dist.all_gather(gathered_logits, logits)
logits = torch.cat(gathered_logits, dim=-1)
return logits
if __name__ == "__main__":
torch.set_default_dtype(torch.bfloat16)
torch.set_default_device("cuda")
torch.manual_seed(0)
args = ModelArgs()
x = torch.randint(0, args.vocab_size, (2, 128))
model = Transformer(args)
print(model(x).size())