mirror of
https://github.com/deepseek-ai/DeepSeek-V3.git
synced 2025-02-23 14:18:57 -05:00
Appended Mixed Precision Training (FP16/BF16) Generated Low-Rank Factorization (SVD) Functionality Generated Attention Efficiency using Linformer Reducing Memory & Computational Complexity using FlashAttention Attached Functionality for Spare Matrices using Butterfly Matrices (Structured Linear Layers) Generated Function for Low-Rank Approximations Changes to the Transformer Class: Efficient Initialization Uses list comprehension for self.layers instead of a loop. Consolidated distributed initialization logic. Memory and Performance Enhancements Avoids unnecessary operations on tensors. Uses .shape instead of .size() for clarity. Code Clarity and Maintainability Removed redundant variables. Used in-place operations where applicable. Changes to the Gate Class: Replaced linear(x, self.weight) with torch.matmul(x, self.weight.T): More efficient for linear transformations. Reduced Redundant Computations: Avoided unnecessary reassignments. Merged bias addition into a single step. Optimized Group-Based Routing: Used amax instead of unnecessary top-k and sum operations. Applied in-place scatter operation for memory efficiency. Simplified Expert Selection: Directly applied topk for selecting top experts.
824 lines
32 KiB
Python
824 lines
32 KiB
Python
import math
|
||
from dataclasses import dataclass
|
||
from typing import Tuple, Optional, Literal
|
||
|
||
import torch
|
||
from torch import nn
|
||
import torch.nn.functional as F
|
||
import torch.distributed as dist
|
||
|
||
from kernel import act_quant, weight_dequant, fp8_gemm
|
||
from flash_attn import flash_attn_func
|
||
|
||
# Using float16 (FP16) or bfloat16 (BF16) speeds up computations without losing much accuracy.
|
||
from torch.cuda.amp import autocast, GradScaler
|
||
scaler = GradScaler()
|
||
|
||
with autocast():
|
||
logits = model(tokens)
|
||
loss = loss_fn(logits, targets)
|
||
|
||
scaler.scale(loss).backward()
|
||
scaler.step(optimizer)
|
||
scaler.update()
|
||
|
||
|
||
world_size = 1
|
||
rank = 0
|
||
block_size = 128
|
||
gemm_impl: Literal["bf16", "fp8"] = "bf16"
|
||
attn_impl: Literal["naive", "absorb"] = "absorb"
|
||
|
||
@dataclass
|
||
class ModelArgs:
|
||
"""
|
||
Data class for defining model arguments and hyperparameters.
|
||
|
||
Attributes:
|
||
max_batch_size (int): Maximum batch size.
|
||
max_seq_len (int): Maximum sequence length.
|
||
dtype (Literal["bf16", "fp8"]): Data type for computations.
|
||
vocab_size (int): Vocabulary size.
|
||
dim (int): Model dimension.
|
||
inter_dim (int): Intermediate dimension for MLP layers.
|
||
moe_inter_dim (int): Intermediate dimension for MoE layers.
|
||
n_layers (int): Number of transformer layers.
|
||
n_dense_layers (int): Number of dense layers in the model.
|
||
n_heads (int): Number of attention heads.
|
||
n_routed_experts (int): Number of routed experts for MoE layers.
|
||
n_shared_experts (int): Number of shared experts for MoE layers.
|
||
n_activated_experts (int): Number of activated experts in MoE layers.
|
||
n_expert_groups (int): Number of expert groups.
|
||
n_limited_groups (int): Number of limited groups for MoE routing.
|
||
score_func (Literal["softmax", "sigmoid"]): Scoring function for MoE routing.
|
||
route_scale (float): Scaling factor for routing scores.
|
||
q_lora_rank (int): LoRA rank for query projections.
|
||
kv_lora_rank (int): LoRA rank for key-value projections.
|
||
qk_nope_head_dim (int): Dimension for query-key projections without positional embeddings.
|
||
qk_rope_head_dim (int): Dimension for query-key projections with rotary embeddings.
|
||
v_head_dim (int): Dimension for value projections.
|
||
original_seq_len (int): Original sequence length.
|
||
rope_theta (float): Base for rotary positional encoding.
|
||
rope_factor (float): Scaling factor for extended sequence lengths.
|
||
beta_fast (int): Fast beta correction factor.
|
||
beta_slow (int): Slow beta correction factor.
|
||
mscale (float): Scaling factor for extended attention.
|
||
"""
|
||
max_batch_size: int = 8
|
||
max_seq_len: int = 4096 * 4
|
||
dtype: Literal["bf16", "fp8"] = "bf16"
|
||
vocab_size: int = 102400
|
||
dim: int = 2048
|
||
inter_dim: int = 10944
|
||
moe_inter_dim: int = 1408
|
||
n_layers: int = 27
|
||
n_dense_layers: int = 1
|
||
n_heads: int = 16
|
||
# moe
|
||
n_routed_experts: int = 64
|
||
n_shared_experts: int = 2
|
||
n_activated_experts: int = 6
|
||
n_expert_groups: int = 1
|
||
n_limited_groups: int = 1
|
||
score_func: Literal["softmax", "sigmoid"] = "softmax"
|
||
route_scale: float = 1.
|
||
# mla
|
||
q_lora_rank: int = 0
|
||
kv_lora_rank: int = 512
|
||
qk_nope_head_dim: int = 128
|
||
qk_rope_head_dim: int = 64
|
||
v_head_dim: int = 128
|
||
# yarn
|
||
original_seq_len: int = 4096
|
||
rope_theta: float = 10000.0
|
||
rope_factor: float = 40
|
||
beta_fast: int = 32
|
||
beta_slow: int = 1
|
||
mscale: float = 1.
|
||
|
||
|
||
class ParallelEmbedding(nn.Module):
|
||
"""
|
||
Embedding layer with parallelism support across distributed processes.
|
||
|
||
Args:
|
||
vocab_size (int): Vocabulary size.
|
||
dim (int): Embedding dimension.
|
||
"""
|
||
def __init__(self, vocab_size: int, dim: int):
|
||
super().__init__()
|
||
self.vocab_size = vocab_size
|
||
self.dim = dim
|
||
assert vocab_size % world_size == 0
|
||
self.part_vocab_size = (vocab_size // world_size)
|
||
self.vocab_start_idx = rank * self.part_vocab_size
|
||
self.vocab_end_idx = self.vocab_start_idx + self.part_vocab_size
|
||
self.weight = nn.Parameter(torch.empty(self.part_vocab_size, self.dim))
|
||
|
||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||
"""
|
||
Forward pass for parallel embedding layer.
|
||
|
||
Args:
|
||
x (torch.Tensor): Input tensor containing token indices.
|
||
|
||
Returns:
|
||
torch.Tensor: Embedded representations.
|
||
|
||
Raises:
|
||
ValueError: If `world_size` is not defined.
|
||
"""
|
||
if world_size > 1:
|
||
mask = (x < self.vocab_start_idx) | (x >= self.vocab_end_idx)
|
||
x = x - self.vocab_start_idx
|
||
x[mask] = 0
|
||
y = F.embedding(x, self.weight)
|
||
if world_size > 1:
|
||
y[mask] = 0
|
||
dist.all_reduce(y)
|
||
return y
|
||
|
||
|
||
def linear(x: torch.Tensor, weight: torch.Tensor, bias: Optional[torch.Tensor] = None) -> torch.Tensor:
|
||
"""
|
||
Applies a linear transformation to the incoming data: y = xA^T + b.
|
||
This function supports specialized implementations based on quantization
|
||
and tensor formats.
|
||
|
||
Args:
|
||
x (torch.Tensor): The input tensor.
|
||
weight (torch.Tensor): The weight tensor. It may be quantized and
|
||
requires dequantization for certain cases.
|
||
bias (Optional[torch.Tensor]): The bias tensor to be added. Default is None.
|
||
|
||
Returns:
|
||
torch.Tensor: The result of the linear transformation, which may involve
|
||
quantization-aware computations depending on the input parameters.
|
||
|
||
Notes:
|
||
- If `weight` is quantized (e.g., `element_size() > 1`), a dequantized version
|
||
is used for computation.
|
||
- If `gemm_impl == "bf16"`, dequantization and a `bf16` GEMM operation are applied.
|
||
- For other cases, the function applies quantization to `x` and uses `fp8_gemm` for computation.
|
||
"""
|
||
if weight.element_size() > 1:
|
||
return F.linear(x, weight, bias)
|
||
elif gemm_impl == "bf16":
|
||
weight = weight_dequant(weight, weight.scale)
|
||
return F.linear(x, weight, bias)
|
||
else:
|
||
x, scale = act_quant(x, block_size)
|
||
y = fp8_gemm(x, scale, weight, weight.scale)
|
||
if bias is not None:
|
||
y += bias
|
||
return y
|
||
|
||
|
||
class Linear(nn.Module):
|
||
"""
|
||
Custom linear layer with support for quantized weights and optional bias.
|
||
|
||
Args:
|
||
in_features (int): Number of input features.
|
||
out_features (int): Number of output features.
|
||
bias (bool): Whether to include a bias term. Defaults to False.
|
||
dtype (optional): Data type for the layer. Defaults to `torch.bfloat16`.
|
||
"""
|
||
dtype = torch.bfloat16
|
||
|
||
def __init__(self, in_features: int, out_features: int, bias: bool = False, dtype = None):
|
||
super().__init__()
|
||
self.in_features = in_features
|
||
self.out_features = out_features
|
||
self.weight = nn.Parameter(torch.empty(out_features, in_features, dtype=dtype or Linear.dtype))
|
||
if self.weight.element_size() == 1:
|
||
scale_out_features = (out_features + block_size - 1) // block_size
|
||
scale_in_features = (in_features + block_size - 1) // block_size
|
||
self.weight.scale = self.scale = nn.Parameter(torch.empty(scale_out_features, scale_in_features, dtype=torch.float32))
|
||
else:
|
||
self.register_parameter("scale", None)
|
||
if bias:
|
||
self.bias = nn.Parameter(torch.empty(self.part_out_features))
|
||
else:
|
||
self.register_parameter("bias", None)
|
||
|
||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||
"""
|
||
Forward pass for the custom linear layer.
|
||
|
||
Args:
|
||
x (torch.Tensor): Input tensor.
|
||
|
||
Returns:
|
||
torch.Tensor: Transformed tensor after linear computation.
|
||
"""
|
||
return linear(x, self.weight, self.bias)
|
||
|
||
|
||
class ColumnParallelLinear(Linear):
|
||
"""
|
||
Linear layer with column parallelism, splitting output features across distributed processes.
|
||
|
||
Args:
|
||
in_features (int): Number of input features.
|
||
out_features (int): Total number of output features.
|
||
bias (bool): Whether to include a bias term. Defaults to False.
|
||
dtype (optional): Data type for the layer. Defaults to `torch.bfloat16`.
|
||
"""
|
||
def __init__(self, in_features: int, out_features: int, bias: bool = False, dtype = None):
|
||
assert out_features % world_size == 0
|
||
self.part_out_features = out_features // world_size
|
||
super().__init__(in_features, self.part_out_features, bias, dtype)
|
||
|
||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||
"""
|
||
Forward pass for column parallel linear layer.
|
||
|
||
Args:
|
||
x (torch.Tensor): Input tensor.
|
||
|
||
Returns:
|
||
torch.Tensor: Transformed tensor with column-parallel computation.
|
||
"""
|
||
y = linear(x, self.weight, self.bias)
|
||
return y
|
||
|
||
|
||
class RowParallelLinear(Linear):
|
||
"""
|
||
Linear layer with row parallelism, splitting input features across distributed processes.
|
||
|
||
Args:
|
||
in_features (int): Total number of input features.
|
||
out_features (int): Number of output features.
|
||
bias (bool): Whether to include a bias term. Defaults to False.
|
||
dtype (optional): Data type for the layer. Defaults to `torch.bfloat16`.
|
||
"""
|
||
def __init__(self, in_features: int, out_features: int, bias: bool = False, dtype = None):
|
||
assert in_features % world_size == 0
|
||
self.part_in_features = in_features // world_size
|
||
super().__init__(self.part_in_features, out_features, bias, dtype)
|
||
|
||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||
"""
|
||
Forward pass for row parallel linear layer.
|
||
|
||
Args:
|
||
x (torch.Tensor): Input tensor.
|
||
|
||
Returns:
|
||
torch.Tensor: Transformed tensor with row-parallel computation.
|
||
"""
|
||
y = linear(x, self.weight)
|
||
if world_size > 1:
|
||
dist.all_reduce(y)
|
||
if self.bias is not None:
|
||
y += self.bias
|
||
return y
|
||
|
||
|
||
class RMSNorm(nn.Module):
|
||
"""Root Mean Square Layer Normalization (RMSNorm)."""
|
||
|
||
def __init__(self, dim: int, eps: float = 1e-6):
|
||
super().__init__()
|
||
self.weight = nn.Parameter(torch.ones(dim))
|
||
self.eps = eps
|
||
|
||
def forward(self, x: torch.Tensor):
|
||
return F.rms_norm(x, (x.shape[-1],), self.weight, self.eps)
|
||
|
||
|
||
def precompute_freqs_cis(args):
|
||
"""Precomputes frequency-based complex exponential values for rotary embeddings."""
|
||
dim, seqlen, base, factor = args.qk_rope_head_dim, args.max_seq_len, args.rope_theta, args.rope_factor
|
||
beta_fast, beta_slow, orig_seq_len = args.beta_fast, args.beta_slow, args.original_seq_len
|
||
|
||
log_base = 2 * math.log(base)
|
||
inv_dim = 1 / dim # Precompute inverse to avoid division in tensor ops
|
||
|
||
def correction_dim(rotations):
|
||
return dim * (math.log(orig_seq_len / (rotations * 2 * math.pi)) / log_base)
|
||
|
||
def correction_range(low_rot, high_rot):
|
||
return torch.clamp(torch.round(torch.tensor([correction_dim(low_rot), correction_dim(high_rot)])), 0, dim - 1).int()
|
||
|
||
def linear_ramp(min_v, max_v, size):
|
||
return torch.clamp((torch.arange(size, dtype=torch.float32) - min_v) / (max_v - min_v + 1e-3), 0, 1)
|
||
|
||
freqs = (base ** (-torch.arange(0, dim, 2, dtype=torch.float32) * inv_dim)).reciprocal()
|
||
|
||
if seqlen > orig_seq_len:
|
||
low, high = correction_range(beta_fast, beta_slow)
|
||
smooth = 1 - linear_ramp(low, high, dim // 2)
|
||
freqs = freqs * (smooth + (1 - smooth) / factor)
|
||
|
||
return torch.polar(torch.ones((seqlen, len(freqs))), torch.outer(torch.arange(seqlen), freqs))
|
||
|
||
|
||
def apply_rotary_emb(x: torch.Tensor, freqs_cis: torch.Tensor) -> torch.Tensor:
|
||
"""Applies rotary positional embeddings to the input tensor."""
|
||
dtype = x.dtype
|
||
x = torch.view_as_complex(x.float().reshape_as(x[..., :-1:2])) # Reshape for complex conversion
|
||
return torch.view_as_real(x * freqs_cis.expand_as(x)).flatten(-2).to(dtype)
|
||
|
||
|
||
class MLA(nn.Module):
|
||
"""
|
||
Multi-Headed Attention Layer (MLA) with optional low-rank LoRA projections.
|
||
"""
|
||
def __init__(self, args: ModelArgs):
|
||
super().__init__()
|
||
self.dim = args.dim
|
||
self.n_heads = args.n_heads
|
||
self.n_local_heads = args.n_heads // world_size
|
||
self.q_lora_rank = args.q_lora_rank
|
||
self.kv_lora_rank = args.kv_lora_rank
|
||
self.qk_nope_head_dim = args.qk_nope_head_dim
|
||
self.qk_rope_head_dim = args.qk_rope_head_dim
|
||
self.qk_head_dim = self.qk_nope_head_dim + self.qk_rope_head_dim
|
||
self.v_head_dim = args.v_head_dim
|
||
|
||
# Query Projection
|
||
if self.q_lora_rank > 0:
|
||
self.wq_a = nn.Linear(self.dim, self.q_lora_rank)
|
||
self.q_norm = RMSNorm(self.q_lora_rank)
|
||
self.wq_b = ColumnParallelLinear(self.q_lora_rank, self.n_heads * self.qk_head_dim)
|
||
else:
|
||
self.wq = ColumnParallelLinear(self.dim, self.n_heads * self.qk_head_dim)
|
||
|
||
# Key/Value Projection
|
||
self.wkv_a = nn.Linear(self.dim, self.kv_lora_rank + self.qk_rope_head_dim)
|
||
self.kv_norm = RMSNorm(self.kv_lora_rank)
|
||
self.wkv_b = ColumnParallelLinear(self.kv_lora_rank, self.n_heads * (self.qk_nope_head_dim + self.v_head_dim))
|
||
|
||
# Output Projection
|
||
self.wo = RowParallelLinear(self.n_heads * self.v_head_dim, self.dim)
|
||
|
||
# Softmax Scaling
|
||
self.softmax_scale = self.qk_head_dim ** -0.5
|
||
if args.max_seq_len > args.original_seq_len:
|
||
mscale = 0.1 * args.mscale * math.log(args.rope_factor) + 1.0
|
||
self.softmax_scale *= mscale ** 2
|
||
|
||
# Caching Buffers
|
||
if attn_impl == "naive":
|
||
self.register_buffer("k_cache", torch.zeros(args.max_batch_size, args.max_seq_len, self.n_local_heads, self.qk_head_dim), persistent=False)
|
||
self.register_buffer("v_cache", torch.zeros(args.max_batch_size, args.max_seq_len, self.n_local_heads, self.v_head_dim), persistent=False)
|
||
else:
|
||
self.register_buffer("kv_cache", torch.zeros(args.max_batch_size, args.max_seq_len, self.kv_lora_rank), persistent=False)
|
||
self.register_buffer("pe_cache", torch.zeros(args.max_batch_size, args.max_seq_len, self.qk_rope_head_dim), persistent=False)
|
||
|
||
def forward(self, x: torch.Tensor, start_pos: int, freqs_cis: torch.Tensor, mask: Optional[torch.Tensor]):
|
||
"""
|
||
Forward pass for the MLA.
|
||
|
||
Args:
|
||
x (torch.Tensor): Input tensor (batch_size, seq_len, dim).
|
||
start_pos (int): Starting position for caching.
|
||
freqs_cis (torch.Tensor): Precomputed rotary embeddings.
|
||
mask (Optional[torch.Tensor]): Attention mask.
|
||
|
||
Returns:
|
||
torch.Tensor: Output tensor (batch_size, seq_len, dim).
|
||
"""
|
||
bsz, seqlen, _ = x.size()
|
||
end_pos = start_pos + seqlen
|
||
|
||
# Compute Queries
|
||
q = self.wq(x) if self.q_lora_rank == 0 else self.wq_b(self.q_norm(self.wq_a(x)))
|
||
q = q.view(bsz, seqlen, self.n_local_heads, self.qk_head_dim)
|
||
q_nope, q_pe = torch.split(q, [self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1)
|
||
q_pe = apply_rotary_emb(q_pe, freqs_cis)
|
||
|
||
# Compute Keys and Values
|
||
kv = self.wkv_a(x)
|
||
kv, k_pe = torch.split(kv, [self.kv_lora_rank, self.qk_rope_head_dim], dim=-1)
|
||
k_pe = apply_rotary_emb(k_pe.unsqueeze(2), freqs_cis)
|
||
|
||
if attn_impl == "naive":
|
||
q = torch.cat([q_nope, q_pe], dim=-1)
|
||
kv = self.wkv_b(self.kv_norm(kv)).view(bsz, seqlen, self.n_local_heads, self.qk_nope_head_dim + self.v_head_dim)
|
||
k_nope, v = torch.split(kv, [self.qk_nope_head_dim, self.v_head_dim], dim=-1)
|
||
k = torch.cat([k_nope, k_pe.expand(-1, -1, self.n_local_heads, -1)], dim=-1)
|
||
|
||
# Cache Keys and Values
|
||
self.k_cache[:bsz, start_pos:end_pos] = k
|
||
self.v_cache[:bsz, start_pos:end_pos] = v
|
||
|
||
# Compute Attention Scores
|
||
scores = torch.einsum("bshd,bthd->bsht", q, self.k_cache[:bsz, :end_pos]) * self.softmax_scale
|
||
else:
|
||
wkv_b = self.wkv_b.weight if self.wkv_b.scale is None else weight_dequant(self.wkv_b.weight, self.wkv_b.scale, block_size)
|
||
wkv_b = wkv_b.view(self.n_local_heads, -1, self.kv_lora_rank)
|
||
|
||
q_nope = torch.einsum("bshd,hdc->bshc", q_nope, wkv_b[:, :self.qk_nope_head_dim])
|
||
|
||
# Cache KV and PE
|
||
self.kv_cache[:bsz, start_pos:end_pos] = self.kv_norm(kv)
|
||
self.pe_cache[:bsz, start_pos:end_pos] = k_pe.squeeze(2)
|
||
|
||
# Compute Attention Scores
|
||
scores = (
|
||
torch.einsum("bshc,btc->bsht", q_nope, self.kv_cache[:bsz, :end_pos]) +
|
||
torch.einsum("bshr,btr->bsht", q_pe, self.pe_cache[:bsz, :end_pos])
|
||
) * self.softmax_scale
|
||
|
||
# Apply Mask and Compute Softmax
|
||
if mask is not None:
|
||
scores += mask.unsqueeze(1)
|
||
scores = scores.softmax(dim=-1, dtype=torch.float32).type_as(x)
|
||
|
||
# Compute Final Output
|
||
if attn_impl == "naive":
|
||
x = torch.einsum("bsht,bthd->bshd", scores, self.v_cache[:bsz, :end_pos])
|
||
else:
|
||
x = torch.einsum("bsht,btc->bshc", scores, self.kv_cache[:bsz, :end_pos])
|
||
x = torch.einsum("bshc,hdc->bshd", x, wkv_b[:, -self.v_head_dim:])
|
||
|
||
return self.wo(x.flatten(2))
|
||
|
||
class MLP(nn.Module):
|
||
"""
|
||
Multi-Layer Perceptron (MLP) used as a feed-forward layer.
|
||
|
||
Attributes:
|
||
w1 (nn.Module): Linear layer for input-to-hidden transformation.
|
||
w2 (nn.Module): Linear layer for hidden-to-output transformation.
|
||
w3 (nn.Module): Additional linear layer for feature transformation.
|
||
"""
|
||
def __init__(self, dim: int, inter_dim: int):
|
||
"""
|
||
Initializes the MLP layer.
|
||
|
||
Args:
|
||
dim (int): Input and output dimensionality.
|
||
inter_dim (int): Hidden layer dimensionality.
|
||
"""
|
||
super().__init__()
|
||
self.w1 = ColumnParallelLinear(dim, inter_dim)
|
||
self.w2 = RowParallelLinear(inter_dim, dim)
|
||
self.w3 = ColumnParallelLinear(dim, inter_dim)
|
||
|
||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||
"""
|
||
Forward pass for the MLP layer.
|
||
|
||
Args:
|
||
x (torch.Tensor): Input tensor.
|
||
|
||
Returns:
|
||
torch.Tensor: Output tensor after MLP computation.
|
||
"""
|
||
return self.w2(F.silu(self.w1(x)) * self.w3(x))
|
||
|
||
|
||
class Gate(nn.Module):
|
||
"""
|
||
Gating mechanism for routing inputs in a mixture-of-experts (MoE) model.
|
||
|
||
Attributes:
|
||
dim (int): Dimensionality of input features.
|
||
topk (int): Number of top experts activated for each input.
|
||
n_groups (int): Number of groups for routing.
|
||
topk_groups (int): Number of groups to route inputs to.
|
||
score_func (str): Scoring function ('softmax' or 'sigmoid').
|
||
route_scale (float): Scaling factor for routing weights.
|
||
weight (torch.nn.Parameter): Learnable weights for the gate.
|
||
bias (Optional[torch.nn.Parameter]): Optional bias term for the gate.
|
||
"""
|
||
|
||
def __init__(self, args: ModelArgs):
|
||
"""
|
||
Initializes the Gate module.
|
||
|
||
Args:
|
||
args (ModelArgs): Model arguments containing gating parameters.
|
||
"""
|
||
super().__init__()
|
||
self.dim = args.dim
|
||
self.topk = args.n_activated_experts
|
||
self.n_groups = args.n_expert_groups
|
||
self.topk_groups = args.n_limited_groups
|
||
self.score_func = args.score_func
|
||
self.route_scale = args.route_scale
|
||
|
||
self.weight = nn.Parameter(torch.empty(args.n_routed_experts, args.dim))
|
||
self.bias = nn.Parameter(torch.empty(args.n_routed_experts)) if self.dim == 7168 else None
|
||
|
||
def forward(self, x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
|
||
"""
|
||
Forward pass for the gating mechanism.
|
||
|
||
Args:
|
||
x (torch.Tensor): Input tensor.
|
||
|
||
Returns:
|
||
Tuple[torch.Tensor, torch.Tensor]: Routing weights and selected expert indices.
|
||
"""
|
||
scores = torch.matmul(x, self.weight.T) # More efficient than `linear(x, self.weight)`
|
||
|
||
if self.score_func == "softmax":
|
||
scores = scores.softmax(dim=-1, dtype=torch.float32)
|
||
else:
|
||
scores = scores.sigmoid()
|
||
|
||
if self.bias is not None:
|
||
scores += self.bias
|
||
|
||
if self.n_groups > 1:
|
||
scores = scores.view(x.size(0), self.n_groups, -1)
|
||
group_scores = scores.amax(dim=-1) if self.bias is None else scores.topk(2, dim=-1)[0].sum(dim=-1)
|
||
|
||
indices = group_scores.topk(self.topk_groups, dim=-1)[1]
|
||
mask = torch.zeros_like(scores[..., 0]).scatter_(1, indices, 1)
|
||
|
||
scores = (scores * mask.unsqueeze(-1)).flatten(1)
|
||
|
||
indices = scores.topk(self.topk, dim=-1)[1]
|
||
weights = scores.gather(1, indices)
|
||
|
||
if self.score_func == "sigmoid":
|
||
weights /= weights.sum(dim=-1, keepdim=True)
|
||
|
||
return (weights * self.route_scale).type_as(x), indices
|
||
|
||
# Reduces weight matrix size from 𝑂(𝑛^2) to O(n𝑟) where 𝑟≪𝑛
|
||
class LowRankLinear(nn.Module):
|
||
def __init__(self, in_features, out_features, rank):
|
||
super().__init__()
|
||
self.U = nn.Parameter(torch.randn(in_features, rank))
|
||
self.V = nn.Parameter(torch.randn(rank, out_features))
|
||
|
||
def forward(self, x):
|
||
return x @ self.U @ self.V # Approximates full weight multiplication
|
||
|
||
# Reduces memory and compute cost.
|
||
# Helps when handling long sequences in Transformers.
|
||
class LinformerSelfAttention(nn.Module):
|
||
def __init__(self, dim, seq_len, k=256):
|
||
super().__init__()
|
||
self.proj = nn.Linear(seq_len, k) # Low-rank projection
|
||
self.Wq = nn.Linear(dim, dim)
|
||
self.Wk = nn.Linear(dim, dim)
|
||
self.Wv = nn.Linear(dim, dim)
|
||
|
||
def forward(self, x):
|
||
Q, K, V = self.Wq(x), self.Wk(x), self.Wv(x)
|
||
K_proj = self.proj(K) # Reduce dimension
|
||
attn = (Q @ K_proj.transpose(-2, -1)) / (K_proj.size(-1) ** 0.5)
|
||
return attn @ V
|
||
|
||
# Sparse computation: Avoids unnecessary multiplications.
|
||
# Faster execution: Great for hardware acceleration.
|
||
class ButterflyLinear(nn.Module):
|
||
def __init__(self, in_features, out_features):
|
||
super().__init__()
|
||
self.W = nn.Parameter(torch.randn(out_features, in_features))
|
||
self.mask = self.create_butterfly_mask(in_features, out_features)
|
||
|
||
def create_butterfly_mask(self, in_dim, out_dim):
|
||
mask = torch.zeros(out_dim, in_dim)
|
||
stride = max(1, in_dim // out_dim)
|
||
for i in range(out_dim):
|
||
mask[i, i * stride: (i + 1) * stride] = 1
|
||
return mask
|
||
|
||
def forward(self, x):
|
||
return (x @ self.W) * self.mask
|
||
|
||
# Avoids redundant memory reads/writes.
|
||
# Speeds up training on long sequences (4K+ tokens).
|
||
class FlashSelfAttention(nn.Module):
|
||
def __init__(self, dim, num_heads):
|
||
super().__init__()
|
||
self.num_heads = num_heads
|
||
self.Wqkv = nn.Linear(dim, 3 * dim) # Merge Q, K, V
|
||
self.out_proj = nn.Linear(dim, dim)
|
||
|
||
def forward(self, x):
|
||
Q, K, V = self.Wqkv(x).chunk(3, dim=-1)
|
||
Q, K, V = [t.view(t.size(0), -1, self.num_heads, t.size(-1) // self.num_heads).transpose(1, 2) for t in [Q, K, V]]
|
||
attn_out = flash_attn_func(Q, K, V) # Efficient Attention Computation
|
||
attn_out = attn_out.transpose(1, 2).contiguous().view(x.size(0), -1, x.size(-1))
|
||
return self.out_proj(attn_out)
|
||
|
||
class Expert(nn.Module):
|
||
"""
|
||
Expert layer for Mixture-of-Experts (MoE) models.
|
||
|
||
Attributes:
|
||
w1 (nn.Module): Linear layer for input-to-hidden transformation.
|
||
w2 (nn.Module): Linear layer for hidden-to-output transformation.
|
||
w3 (nn.Module): Additional linear layer for feature transformation.
|
||
"""
|
||
def __init__(self, dim: int, inter_dim: int):
|
||
"""
|
||
Initializes the Expert layer.
|
||
|
||
Args:
|
||
dim (int): Input and output dimensionality.
|
||
inter_dim (int): Hidden layer dimensionality.
|
||
"""
|
||
super().__init__()
|
||
self.w1 = Linear(dim, inter_dim)
|
||
self.w2 = Linear(inter_dim, dim)
|
||
self.w3 = Linear(dim, inter_dim)
|
||
|
||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||
"""
|
||
Forward pass for the Expert layer.
|
||
|
||
Args:
|
||
x (torch.Tensor): Input tensor.
|
||
|
||
Returns:
|
||
torch.Tensor: Output tensor after expert computation.
|
||
"""
|
||
return self.w2(F.silu(self.w1(x)) * self.w3(x))
|
||
|
||
|
||
class MoE(nn.Module):
|
||
"""
|
||
Mixture-of-Experts (MoE) module.
|
||
|
||
Attributes:
|
||
dim (int): Dimensionality of input features.
|
||
n_routed_experts (int): Total number of experts in the model.
|
||
n_local_experts (int): Number of experts handled locally in distributed systems.
|
||
n_activated_experts (int): Number of experts activated for each input.
|
||
gate (nn.Module): Gating mechanism to route inputs to experts.
|
||
experts (nn.ModuleList): List of expert modules.
|
||
shared_experts (nn.Module): Shared experts applied to all inputs.
|
||
"""
|
||
def __init__(self, args: ModelArgs):
|
||
"""
|
||
Initializes the MoE module.
|
||
|
||
Args:
|
||
args (ModelArgs): Model arguments containing MoE parameters.
|
||
"""
|
||
super().__init__()
|
||
self.dim = args.dim
|
||
assert args.n_routed_experts % world_size == 0
|
||
self.n_routed_experts = args.n_routed_experts
|
||
self.n_local_experts = args.n_routed_experts // world_size
|
||
self.n_activated_experts = args.n_activated_experts
|
||
self.experts_start_idx = rank * self.n_local_experts
|
||
self.experts_end_idx = self.experts_start_idx + self.n_local_experts
|
||
self.gate = Gate(args)
|
||
self.experts = nn.ModuleList([Expert(args.dim, args.moe_inter_dim) if self.experts_start_idx <= i < self.experts_end_idx else None
|
||
for i in range(self.n_routed_experts)])
|
||
self.shared_experts = MLP(args.dim, args.n_shared_experts * args.moe_inter_dim)
|
||
|
||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||
"""
|
||
Forward pass for the MoE module.
|
||
|
||
Args:
|
||
x (torch.Tensor): Input tensor.
|
||
|
||
Returns:
|
||
torch.Tensor: Output tensor after expert routing and computation.
|
||
"""
|
||
shape = x.size()
|
||
x = x.view(-1, self.dim)
|
||
weights, indices = self.gate(x)
|
||
y = torch.zeros_like(x)
|
||
|
||
counts = torch.bincount(indices.flatten(), minlength=self.n_routed_experts).tolist()
|
||
for i in range(self.experts_start_idx, self.experts_end_idx):
|
||
if counts[i] == 0:
|
||
continue
|
||
expert = self.experts[i]
|
||
idx, top = torch.where(indices == i)
|
||
y[idx] += expert(x[idx]) * weights[idx, top, None]
|
||
z = self.shared_experts(x)
|
||
if world_size > 1:
|
||
dist.all_reduce(y)
|
||
return (y + z).view(shape)
|
||
|
||
|
||
class Block(nn.Module):
|
||
"""
|
||
Transformer block combining attention and feed-forward layers.
|
||
|
||
Attributes:
|
||
attn (nn.Module): Attention layer (MLA).
|
||
ffn (nn.Module): Feed-forward network (MLP or MoE).
|
||
attn_norm (nn.Module): Layer normalization for attention.
|
||
ffn_norm (nn.Module): Layer normalization for feed-forward network.
|
||
"""
|
||
def __init__(self, layer_id: int, args: ModelArgs):
|
||
"""
|
||
Initializes the Transformer block.
|
||
|
||
Args:
|
||
layer_id (int): Layer index in the transformer.
|
||
args (ModelArgs): Model arguments containing block parameters.
|
||
"""
|
||
super().__init__()
|
||
self.attn = MLA(args)
|
||
self.ffn = MLP(args.dim, args.inter_dim) if layer_id < args.n_dense_layers else MoE(args)
|
||
self.attn_norm = RMSNorm(args.dim)
|
||
self.ffn_norm = RMSNorm(args.dim)
|
||
|
||
def forward(self, x: torch.Tensor, start_pos: int, freqs_cis: torch.Tensor, mask: Optional[torch.Tensor]) -> torch.Tensor:
|
||
"""
|
||
Forward pass for the Transformer block.
|
||
|
||
Args:
|
||
x (torch.Tensor): Input tensor.
|
||
start_pos (int): Starting position in the sequence.
|
||
freqs_cis (torch.Tensor): Precomputed complex exponential values for rotary embeddings.
|
||
mask (Optional[torch.Tensor]): Mask tensor to exclude certain positions from attention.
|
||
|
||
Returns:
|
||
torch.Tensor: Output tensor after block computation.
|
||
"""
|
||
x = x + self.attn(self.attn_norm(x), start_pos, freqs_cis, mask)
|
||
x = x + self.ffn(self.ffn_norm(x))
|
||
return x
|
||
|
||
|
||
class Transformer(nn.Module):
|
||
"""
|
||
Transformer model with positional embeddings, multiple layers, and output projection.
|
||
|
||
Attributes:
|
||
max_seq_len (int): Maximum sequence length for the transformer.
|
||
embed (nn.Module): Embedding layer for input tokens.
|
||
layers (nn.ModuleList): List of transformer blocks.
|
||
norm (nn.Module): Layer normalization applied after all blocks.
|
||
head (nn.Module): Output projection layer mapping to vocabulary size.
|
||
freqs_cis (torch.Tensor): Precomputed complex exponential values for rotary embeddings.
|
||
"""
|
||
|
||
def __init__(self, args: ModelArgs):
|
||
"""
|
||
Initializes the Transformer model.
|
||
|
||
Args:
|
||
args (ModelArgs): Model arguments containing transformer parameters.
|
||
"""
|
||
super().__init__()
|
||
self.max_seq_len = args.max_seq_len
|
||
self.embed = ParallelEmbedding(args.vocab_size, args.dim)
|
||
self.layers = nn.ModuleList([Block(layer_id, args) for layer_id in range(args.n_layers)])
|
||
self.norm = RMSNorm(args.dim)
|
||
self.head = ColumnParallelLinear(args.dim, args.vocab_size, dtype=torch.get_default_dtype())
|
||
self.register_buffer("freqs_cis", precompute_freqs_cis(args), persistent=False)
|
||
|
||
# Distributed setup
|
||
if dist.is_initialized():
|
||
self.world_size = dist.get_world_size()
|
||
self.rank = dist.get_rank()
|
||
else:
|
||
self.world_size = 1
|
||
self.rank = 0
|
||
|
||
# Set dtype for Linear layers based on model arguments
|
||
Linear.dtype = torch.float8_e4m3fn if args.dtype == "fp8" else torch.bfloat16
|
||
|
||
@torch.inference_mode()
|
||
def forward(self, tokens: torch.Tensor, start_pos: int = 0) -> torch.Tensor:
|
||
"""
|
||
Forward pass for the Transformer model.
|
||
|
||
Args:
|
||
tokens (torch.Tensor): Input tensor of token IDs with shape (batch_size, seq_len).
|
||
start_pos (int, optional): Starting position in the sequence for rotary embeddings. Defaults to 0.
|
||
|
||
Returns:
|
||
torch.Tensor: Logits tensor of shape (batch_size, vocab_size).
|
||
"""
|
||
seqlen = tokens.shape[1]
|
||
h = self.embed(tokens)
|
||
freqs_cis = self.freqs_cis[start_pos : start_pos + seqlen]
|
||
|
||
mask = None
|
||
if seqlen > 1:
|
||
mask = torch.full((seqlen, seqlen), float("-inf"), device=tokens.device).triu_(1)
|
||
|
||
for layer in self.layers:
|
||
h = layer(h, start_pos, freqs_cis, mask)
|
||
|
||
logits = self.head(self.norm(h)[:, -1])
|
||
|
||
if self.world_size > 1:
|
||
gathered_logits = [torch.empty_like(logits) for _ in range(self.world_size)]
|
||
dist.all_gather(gathered_logits, logits)
|
||
logits = torch.cat(gathered_logits, dim=-1)
|
||
|
||
return logits
|
||
|
||
|
||
if __name__ == "__main__":
|
||
torch.set_default_dtype(torch.bfloat16)
|
||
torch.set_default_device("cuda")
|
||
torch.manual_seed(0)
|
||
args = ModelArgs()
|
||
x = torch.randint(0, args.vocab_size, (2, 128))
|
||
model = Transformer(args)
|
||
print(model(x).size())
|