import torch import torch.nn as nn import torch.nn.functional as F import torch.distributed as dist from .config import ModelArgs from ..kernel import act_quant, weight_dequant, fp8_gemm class MLA(nn.Module): def __init__(self, args: ModelArgs): super().__init__() self.dim = args.dim self.n_heads = args.n_heads self.n_local_heads = args.n_heads // dist.get_world_size() if dist.is_initialized() else args.n_heads self.q_lora_rank = args.q_lora_rank self.kv_lora_rank = args.kv_lora_rank self.qk_nope_head_dim = args.qk_nope_head_dim self.qk_rope_head_dim = args.qk_rope_head_dim self.qk_head_dim = args.qk_nope_head_dim + args.qk_rope_head_dim self.v_head_dim = args.v_head_dim # Initialize components (implementation from original MLA class) # ... (rest of the MLA implementation) def forward(self, x: torch.Tensor, start_pos: int, freqs_cis: torch.Tensor, mask: Optional[torch.Tensor]): # ... (MLA forward implementation)