import os import shutil from argparse import ArgumentParser from glob import glob from pathlib import Path from typing import Dict, List, Optional, Tuple, Union import torch from safetensors.torch import safe_open, save_file from tqdm import tqdm, trange # Constants and type definitions TensorMapping = Dict[str, Tuple[str, Optional[int]]] StateDict = Dict[str, torch.Tensor] # Define mapping as a constant at module level TENSOR_MAPPING: TensorMapping = { "embed_tokens": ("embed", 0), "input_layernorm": ("attn_norm", None), "post_attention_layernorm": ("ffn_norm", None), "q_proj": ("wq", 0), "q_a_proj": ("wq_a", None), "q_a_layernorm": ("q_norm", None), "q_b_proj": ("wq_b", 0), "kv_a_proj_with_mqa": ("wkv_a", None), "kv_a_layernorm": ("kv_norm", None), "kv_b_proj": ("wkv_b", 0), "o_proj": ("wo", 1), "gate": ("gate", None), "gate_proj": ("w1", 0), "down_proj": ("w2", 1), "up_proj": ("w3", 0), "norm": ("norm", None), "lm_head": ("head", 0), "scale": ("scale", None), } def process_tensor_name(name: str) -> str: """ Process tensor name by removing prefixes and replacing common patterns. Args: name: Original tensor name Returns: Processed tensor name """ if name.startswith("model."): name = name[len("model."):] replacements = { "self_attn": "attn", "mlp": "ffn", "weight_scale_inv": "scale", "e_score_correction_bias": "bias" } for old, new in replacements.items(): name = name.replace(old, new) return name def shard_tensor(param: torch.Tensor, mp_idx: int, mp_count: int, dim: int) -> torch.Tensor: """ Shard a tensor along specified dimension for model parallelism. Args: param: Input tensor to shard mp_idx: Index of current model parallel rank mp_count: Total number of model parallel ranks dim: Dimension along which to shard Returns: Sharded tensor slice """ if param.size(dim) % mp_count != 0: raise ValueError(f"Tensor size {param.size(dim)} not divisible by mp_count {mp_count}") shard_size = param.size(dim) // mp_count return param.narrow(dim, mp_idx * shard_size, shard_size).contiguous() def convert_checkpoint( hf_ckpt_path: Union[str, Path], save_path: Union[str, Path], n_experts: int, mp: int ) -> None: """ Convert and save model checkpoint files into a specified format. Args: hf_ckpt_path: Path to input checkpoint directory save_path: Path to output directory for converted checkpoints n_experts: Total number of experts in model mp: Model parallelism factor Raises: ValueError: If n_experts is not divisible by mp FileNotFoundError: If input path doesn't exist or contain safetensors """ if n_experts % mp != 0: raise ValueError(f"Number of experts ({n_experts}) must be divisible by model parallel size ({mp})") hf_ckpt_path = Path(hf_ckpt_path) save_path = Path(save_path) if not hf_ckpt_path.exists(): raise FileNotFoundError(f"Checkpoint path {hf_ckpt_path} does not exist") safetensor_files = list(hf_ckpt_path.glob("*.safetensors")) if not safetensor_files: raise FileNotFoundError(f"No safetensor files found in {hf_ckpt_path}") torch.set_num_threads(8) n_local_experts = n_experts // mp state_dicts: List[StateDict] = [{} for _ in range(mp)] # Process each checkpoint file for file_path in tqdm(safetensor_files, desc="Processing checkpoint files"): with safe_open(file_path, framework="pt", device="cpu") as f: for name in f.keys(): if "model.layers.61" in name: continue param: torch.Tensor = f.get_tensor(name) name = process_tensor_name(name) key = name.split(".")[-2] if key not in TENSOR_MAPPING: raise ValueError(f"Unknown tensor key: {key}") new_key, dim = TENSOR_MAPPING[key] name = name.replace(key, new_key) # Distribute tensors across model parallel ranks for i in range(mp): new_param = param if "experts" in name and "shared_experts" not in name: idx = int(name.split(".")[-3]) if not (i * n_local_experts <= idx < (i + 1) * n_local_experts): continue elif dim is not None: new_param = shard_tensor(param, i, mp, dim) state_dicts[i][name] = new_param # Save converted checkpoints save_path.mkdir(parents=True, exist_ok=True) for i in trange(mp, desc="Saving converted checkpoints"): output_file = save_path / f"model{i}-mp{mp}.safetensors" save_file(state_dicts[i], str(output_file)) # Copy tokenizer files for file_path in hf_ckpt_path.glob("*token*"): shutil.copyfile(file_path, save_path / file_path.name) def main(): """Parse command line arguments and run the conversion.""" parser = ArgumentParser(description="Convert HuggingFace checkpoints to custom format") parser.add_argument("--hf-ckpt-path", type=str, required=True, help="Path to input HuggingFace checkpoint directory") parser.add_argument("--save-path", type=str, required=True, help="Path to output directory for converted checkpoints") parser.add_argument("--n-experts", type=int, required=True, help="Total number of experts in the model") parser.add_argument("--model-parallel", type=int, required=True, help="Model parallelism factor") args = parser.parse_args() try: convert_checkpoint(args.hf_ckpt_path, args.save_path, args.n_experts, args.model_parallel) except Exception as e: print(f"Error during conversion: {str(e)}") raise if __name__ == "__main__": main()