import os import json from argparse import ArgumentParser from glob import glob from typing import Dict, Any from tqdm import tqdm import torch from safetensors.torch import load_file, save_file from kernel import weight_dequant class WeightConverter: def __init__(self, fp8_path: str, bf16_path: str): """ Initialize the weight converter with input and output paths. Args: fp8_path (str): Path to the directory containing FP8 weights bf16_path (str): Path to save the converted BF16 weights """ self.fp8_path = fp8_path self.bf16_path = bf16_path self.loaded_files: Dict[str, Dict[str, torch.Tensor]] = {} self.fp8_weight_names: list = [] self.weight_map: Dict[str, str] = self._load_model_index() def _load_model_index(self) -> Dict[str, str]: """ Load the model index file. Returns: Dict[str, str]: Weight mapping from the index file """ model_index_file = os.path.join(self.fp8_path, "model.safetensors.index.json") with open(model_index_file, "r") as f: return json.load(f)["weight_map"] def _get_tensor(self, tensor_name: str) -> torch.Tensor: """ Get a tensor from cache or load it from disk. Args: tensor_name (str): Name of the tensor to retrieve Returns: torch.Tensor: The requested tensor Raises: KeyError: If tensor doesn't exist in the safetensor file """ file_name = self.weight_map[tensor_name] if file_name not in self.loaded_files: file_path = os.path.join(self.fp8_path, file_name) self.loaded_files[file_name] = load_file(file_path, device="cuda") return self.loaded_files[file_name][tensor_name] def _manage_memory(self): """ Keep only the 2 most recently used files in memory. """ if len(self.loaded_files) > 2: oldest_file = next(iter(self.loaded_files)) del self.loaded_files[oldest_file] torch.cuda.empty_cache() def _process_weight(self, weight_name: str, weight: torch.Tensor) -> torch.Tensor: """ Process a single weight tensor. Args: weight_name (str): Name of the weight tensor weight (torch.Tensor): The weight tensor to process Returns: torch.Tensor: Processed weight tensor """ if weight_name.endswith("_scale_inv"): return None if weight.element_size() == 1: # FP8 weight scale_inv_name = f"{weight_name}_scale_inv" try: scale_inv = self._get_tensor(scale_inv_name) self.fp8_weight_names.append(weight_name) return weight_dequant(weight, scale_inv) except KeyError: print(f"Warning: Missing scale_inv tensor for {weight_name}, skipping conversion") return weight return weight def _save_model_index(self): """ Save the updated model index file. """ new_model_index_file = os.path.join(self.bf16_path, "model.safetensors.index.json") for weight_name in self.fp8_weight_names: scale_inv_name = f"{weight_name}_scale_inv" if scale_inv_name in self.weight_map: self.weight_map.pop(scale_inv_name) with open(new_model_index_file, "w") as f: json.dump({"metadata": {}, "weight_map": self.weight_map}, f, indent=2) def convert(self): """ Convert FP8 weights to BF16 format. """ torch.set_default_dtype(torch.bfloat16) os.makedirs(self.bf16_path, exist_ok=True) safetensor_files = sorted(glob(os.path.join(self.fp8_path, "*.safetensors"))) for safetensor_file in tqdm(safetensor_files): file_name = os.path.basename(safetensor_file) current_state_dict = load_file(safetensor_file, device="cuda") self.loaded_files[file_name] = current_state_dict new_state_dict = {} for weight_name, weight in current_state_dict.items(): processed_weight = self._process_weight(weight_name, weight) if processed_weight is not None: new_state_dict[weight_name] = processed_weight new_safetensor_file = os.path.join(self.bf16_path, file_name) save_file(new_state_dict, new_safetensor_file) self._manage_memory() self._save_model_index() def main(fp8_path: str, bf16_path: str): """ Main function to convert FP8 weights to BF16. Args: fp8_path (str): Input directory containing FP8 weights bf16_path (str): Output directory for BF16 weights """ converter = WeightConverter(fp8_path, bf16_path) converter.convert() if __name__ == "__main__": parser = ArgumentParser() parser.add_argument("--input-fp8-hf-path", type=str, required=True) parser.add_argument("--output-bf16-hf-path", type=str, required=True) args = parser.parse_args() main(args.input_fp8_hf_path, args.output_bf16_hf_path)