const std = @import("std"); const deepseek_core = @import("deepseek_core"); const openai = @import("openai.zig"); const Allocator = std.mem.Allocator; const http = std.http; /// Handle chat completions endpoint (OpenAI compatible) pub fn chatCompletions( allocator: Allocator, model: *deepseek_core.Model, request: *http.Server.Request, ) !void { _ = allocator; _ = model; // For now, send a simple placeholder response const response_json = \\{ \\ "id": "chatcmpl-123", \\ "object": "chat.completion", \\ "created": 1677652288, \\ "model": "deepzig-v3", \\ "choices": [{ \\ "index": 0, \\ "message": { \\ "role": "assistant", \\ "content": "Hello! This is a placeholder response from DeepZig V3." \\ }, \\ "finish_reason": "stop" \\ }], \\ "usage": { \\ "prompt_tokens": 10, \\ "completion_tokens": 15, \\ "total_tokens": 25 \\ } \\} ; try request.respond(response_json, .{ .extra_headers = &.{ .{ .name = "content-type", .value = "application/json" }, }, }); } /// Handle text completions endpoint pub fn completions( allocator: Allocator, model: *deepseek_core.Model, request: *http.Server.Request, ) !void { _ = allocator; _ = model; try request.respond("Text completions not yet implemented", .{ .status = .not_implemented, }); } /// Handle models list endpoint pub fn models( allocator: Allocator, model: *deepseek_core.Model, request: *http.Server.Request, ) !void { _ = allocator; _ = model; const response_json = \\{ \\ "object": "list", \\ "data": [{ \\ "id": "deepzig-v3", \\ "object": "model", \\ "created": 1677652288, \\ "owned_by": "deepzig" \\ }] \\} ; try request.respond(response_json, .{ .extra_headers = &.{ .{ .name = "content-type", .value = "application/json" }, }, }); } /// Handle health check endpoint pub fn health(allocator: Allocator, request: *http.Server.Request) !void { _ = allocator; const response_json = \\{ \\ "status": "healthy", \\ "timestamp": 1677652288, \\ "version": "0.1.0" \\} ; try request.respond(response_json, .{ .extra_headers = &.{ .{ .name = "content-type", .value = "application/json" }, }, }); } /// Handle WebSocket endpoint pub fn websocket( allocator: Allocator, model: *deepseek_core.Model, request: *http.Server.Request, ) !void { _ = allocator; _ = model; try request.respond("WebSocket not yet implemented", .{ .status = .not_implemented, }); } /// Generate chat completion response (helper function) fn generateChatCompletion( allocator: Allocator, model: *deepseek_core.Model, chat_request: openai.ChatCompletionRequest, ) !*openai.ChatCompletionResponse { // TODO: Implement actual generation _ = model; _ = chat_request; const response = try allocator.create(openai.ChatCompletionResponse); response.* = openai.ChatCompletionResponse{ .id = "chatcmpl-123", .object = "chat.completion", .created = std.time.timestamp(), .model = "deepzig-v3", .choices = &[_]openai.Choice{ .{ .index = 0, .message = openai.Message{ .role = "assistant", .content = "Hello! This is a placeholder response from DeepZig V3.", }, .finish_reason = "stop", }, }, .usage = openai.Usage{ .prompt_tokens = 10, .completion_tokens = 15, .total_tokens = 25, }, }; return response; }