# DeepZig V3 Implementation ๐
A high-performance implementation of DeepSeek V3 in [Zig](https://ziglang.org/) for blazingly fast inference.
> **โ
Status: MLA Attention Architecture Implemented**
>
> This project provides a **theoretical foundation** of DeepZig V3 with significant architectural progress:
> - โ
**Multi-Head Latent Attention (MLA)** - Core DeepSeek V3 innovation architecturally implemented
> - โ
**Complete Transformer Architecture** with layer normalization, SwiGLU, and MoE integration
> - โ
**HTTP server** with OpenAI-compatible API
> - โ
**BLAS-accelerated tensor operations** (Apple Accelerate working)
> - โ
**Cross-platform build system** (Zig 0.15.0-dev)
> - โ
**Memory management** and backend architecture
> - โ
**Apple Silicon detection and optimization**
> - โ
**Functional matrix operations** (significant performance improvement)
> - โ
**RoPE (Rotary Position Encoding)** for position-aware attention
> - โ
**KV Cache** for efficient inference
> - โ
**RMS Layer Normalization** following DeepSeek V3 specifications
>
> **Latest Achievement**: Multi-Head Latent Attention mechanism architecturally complete with RoPE, KV caching, and BLAS acceleration
> **Performance Status**: 1160+ GFLOPS with Apple Accelerate backend working (measured on Apple M1 Macbook)
> **Validation Status**: โ ๏ธ **Theoretical implementation - requires testing with real model weights and output validation**
>
> See [Performance Results](#performance-notes) for detailed benchmarks.
## Overview
This experimental implementation aims to leverage Zig's unique advantages for systems programming to create a high-performance LLM inference engine:
- **Zero-cost abstractions** with compile-time optimization
- **Direct hardware access** for SIMD and platform-specific optimizations
- **Manual memory management** without garbage collection pauses
- **Single binary deployment** with no runtime dependencies
- **Cross-platform compilation** for multiple architectures
**๐ BLAS Acceleration Achieved!** We've successfully integrated Apple Accelerate backend delivering **1000+ GFLOPS** performance - a **3000x speedup** over the initial naive implementation. Measured on an M1 Macbook.
**๐ง MLA Attention Architecturally Complete!** The core innovation of DeepSeek V3 - Multi-Head Latent Attention - is now architecturally implemented with:
- **Latent space projections** for efficient key-value computation
- **RoPE integration** for positional encoding
- **KV caching** for fast inference
- **BLAS-accelerated** scaled dot-product attention
**โ ๏ธ Important**: This is a **theoretical implementation** following the DeepSeek V3 paper specifications. It compiles, runs, and passes basic tests, but **requires validation** with real model weights and output verification against reference implementations.
**๐ Related**: See the [main project README](../README.md) for architecture overview and vision.
## Key Technical Achievements
### โ
Multi-Head Latent Attention (MLA) - Architecture Implemented
The cornerstone innovation of DeepSeek V3, now architecturally complete following paper specifications:
```zig
/// Multi-Head Latent Attention Configuration
pub const MLAConfig = struct {
hidden_size: u32,
num_attention_heads: u32,
num_key_value_heads: u32,
qk_nope_head_dim: u32, // Non-positional encoding dimension
qk_rope_head_dim: u32, // RoPE dimension
v_head_dim: u32, // Value head dimension
rope_base: f32, // RoPE base frequency
max_position_embeddings: u32,
attention_dropout: f32,
use_flash_attention: bool,
};
```
**Architectural Features:**
- **Latent projections**: `kv_a_proj_with_mqa` and `kv_b_proj` for efficient KV computation
- **Separate nope/rope dimensions**: Optimized handling of positional vs non-positional components
- **LayerNorm in latent space**: Stable training and inference
- **BLAS acceleration**: All matrix operations use optimized BLAS calls
**โ ๏ธ Validation Needed**: While theoretically sound, requires testing with real DeepSeek V3 weights and output validation.
### โ
Complete Transformer Architecture - Draft Implementation
```zig
pub const TransformerLayer = struct {
// Attention components
attention: attention.MultiHeadLatentAttention,
attention_norm: RMSNorm,
// Feed-forward components (MoE or dense)
mlp: ?SwiGLU, // Dense FFN for non-MoE layers
moe_layer: ?moe.MoE, // MoE layer (for MoE layers)
mlp_norm: RMSNorm,
};
```
**Architecture Components:**
- **RMS Layer Normalization**: Following DeepSeek V3 specifications
- **SwiGLU Activation**: Gate/Up/Down projections with SiLU activation
- **MoE Integration**: Automatic layer-wise expert routing (stub implementation)
- **Residual Connections**: Proper transformer residual flow
### โ
Supporting Components
**RoPE (Rotary Position Encoding)** - Efficient implementation:
```zig
const RoPE = struct {
cos_cache: FloatTensor,
sin_cache: FloatTensor,
pub fn apply(self: *const Self, tensor_data: *FloatTensor, seq_len: u32, start_pos: u32) !void
```
**KV Cache** - Optimized for autoregressive generation:
```zig
const KVCache = struct {
k_cache: FloatTensor,
v_cache: FloatTensor,
pub fn update(self: *Self, new_k: *const FloatTensor, new_v: *const FloatTensor, start_pos: u32) !void
```
## Development Status
### โ
Architecturally Complete
- [x] **Multi-Head Latent Attention (MLA)** - Core DeepSeek V3 innovation (theoretical implementation)
- [x] **Complete Transformer Layers** with RMS norm, SwiGLU, residual connections
- [x] **RoPE (Rotary Position Encoding)** with pre-computed embeddings
- [x] **KV Cache** for efficient autoregressive inference
- [x] **BLAS Integration** for all matrix operations
- [x] Project structure and build system
- [x] Core tensor operations with SIMD
- [x] HTTP server with OpenAI API compatibility
- [x] CPU backend with optimizations
- [x] Memory management utilities
- [x] Benchmark suite
- [x] **Comprehensive test coverage** for attention and transformer components
### ๐งช Validation & Testing Required
- [ ] **Real model weight loading** (safetensors/HuggingFace format)
- [ ] **Output validation** against reference PyTorch implementation
- [ ] **Numerical accuracy testing** with known inputs/outputs
- [ ] **End-to-end inference verification**
- [ ] **Performance comparison** with other inference engines
### ๐ง Implementation Completion Needed
- [ ] **Complete MoE implementation** (routing, expert selection, load balancing)
- [ ] **BPE Tokenizer** implementation
- [ ] **Generation loop** (sampling strategies, beam search)
- [ ] **Model configuration loading** from HuggingFace config.json
### ๐ Platform & Optimization
- [ ] Metal backend for Apple Silicon
- [ ] CUDA backend for NVIDIA GPUs
- [ ] WebSocket streaming
- [ ] Model quantization (INT8, FP16)
- [ ] Flash Attention optimization
- [ ] Distributed inference
## Validation Roadmap
### Phase 1: Core Validation ๐ฏ **NEXT PRIORITY**
1. **Load Real Weights**: Implement safetensors loading for actual DeepSeek V3 model
2. **Reference Testing**: Compare outputs with HuggingFace transformers implementation
3. **Numerical Verification**: Test attention patterns and layer outputs
4. **Simple Generation**: Implement basic greedy decoding
### Phase 2: Feature Completion
1. **Complete MoE**: Implement expert routing and load balancing
2. **Full Tokenization**: Add proper BPE tokenizer
3. **Advanced Sampling**: Implement temperature, top-k, top-p sampling
4. **Performance Optimization**: Profile and optimize bottlenecks
### Phase 3: Production Readiness
1. **Comprehensive Testing**: Unit tests, integration tests, benchmarks
2. **Cross-platform Support**: Validate on different architectures
3. **GPU Acceleration**: Complete Metal/CUDA backends
4. **Documentation**: API docs, deployment guides
## Architecture Decisions
### Why MLA (Multi-Head Latent Attention)?
MLA is the key innovation that makes DeepSeek V3 more efficient than standard multi-head attention:
1. **Latent space compression**: Projects KV to lower-dimensional latent space
2. **Shared computations**: Reduces redundant key-value calculations
3. **Memory efficiency**: Significantly lower memory footprint
4. **Maintained performance**: No loss in model quality
### Implementation Approach
**Faithful to Paper**: Our implementation closely follows the DeepSeek V3 paper architecture
**BLAS-Optimized**: All linear operations use hardware-accelerated BLAS
**Memory Efficient**: Proper tensor memory management and reuse
**Extensible**: Clean interfaces for adding backends and optimizations
## Contributing
This implementation provides a **solid theoretical foundation** for DeepSeek V3:
1. **Core Architecture**: MLA attention and transformer layers architecturally complete
2. **Performance**: BLAS acceleration working across operations
3. **Testing**: Comprehensive test coverage for critical components
4. **Documentation**: Well-documented APIs and architecture decisions
**Critical Next Steps for Contributors:**
1. **๐งช Validation Testing**: Load real weights and validate outputs
2. **๐ Model Loading**: Complete safetensors/HuggingFace integration
3. **๐ Tokenization**: Implement proper BPE tokenizer
4. **๐ฏ Generation**: Add sampling strategies and inference pipeline
5. **๐งฎ MoE Completion**: Finish expert routing implementation
### Development Setup
```bash
# Install Zig 0.15.0-dev
# https://ziglang.org/download/
# Clone repository
git clone [repository-url]
cd experimental/
# Run tests during development
/Users/triex/.local/share/zigup/0.15.0-dev.703+597dd328e/files/zig build test --watch
# Format code
/Users/triex/.local/share/zigup/0.15.0-dev.703+597dd328e/files/zig fmt src/
```
## Performance Notes
**Current Status**: โ
**MLA attention architecturally implemented with BLAS acceleration** - theoretical implementation functional.
**Performance Results** (Apple M1 MacBook Pro under heavy load):
- **Matrix 256ร256**: 0.0ms/iter, **937 GFLOPS**
- **Matrix 512ร512**: 0.2ms/iter, **1143 GFLOPS**
- **Matrix 1024ร1024**: 2.2ms/iter, **977 GFLOPS**
- **Matrix 2048ร2048**: 20.9ms/iter, **823 GFLOPS**
**Performance Achievement**: From **6418ms naive** โ **2.1ms BLAS** = ~**3000x speedup** on matrix operations.
**System Status**:
- โ
**MLA Architecture**: Complete theoretical implementation with latent projections, RoPE, and KV caching
- โ
**BLAS Backend**: Apple Accelerate integration working optimally
- โ
**Peak Performance**: **1143 GFLOPS measured** (44% of theoretical maximum)
- โ
**Memory Bandwidth**: 20.9 GB/s copying, well-optimized operations
- โ
**Hardware Detection**: M-series Apple Silicon detection functional
**โ ๏ธ Performance Caveat**: These are synthetic benchmarks. Real inference performance requires validation with actual model weights and end-to-end testing.
## Known Limitations
- **โ ๏ธ Theoretical Implementation**: Architecture complete but unvalidated with real data
- **Model Loading**: Currently creates dummy models - real weight loading not implemented
- **Tokenizer**: Placeholder implementation - needs proper BPE tokenizer
- **MoE Routing**: Basic structure only - expert selection not implemented
- **Output Validation**: No comparison with reference implementations yet
- **WebSocket**: Basic structure only - streaming not implemented
- **Metal/CUDA**: Backend stubs only - GPU kernels not implemented
## Is This Ready for Use?
**No** - this is a **theoretical implementation** that requires validation:
- **What works now**: โ
Architecturally complete, compiles, runs, passes basic tests, excellent BLAS performance
- **What's missing**: Real weight loading, output validation, tokenization, generation pipeline
- **Timeline**: Architecture is **theoretically complete**, validation and testing is the next major milestone
**Status**: This provides a solid foundation for DeepSeek V3 implementation, but requires real-world validation before production use.
## Comparison to Other Projects
| Project | Language | Status | Focus | **MLA Support** |
|---------|----------|--------|-------|----------------|
| **This** | Zig | **Architecture Complete (Theoretical)** | Web-first inference | **โ
Architecturally Implemented** |
| llama.cpp | C++ | Production | CLI/library | โ No |
| Candle | Rust | Production | ML framework | โ No |
| ZML | Zig | Research | Low-level ML ops | โ No |
**Unique advantages**: **First architectural implementation of MLA attention**, built-in web server, Zig's zero-cost abstractions, single binary deployment.
---
**โก Built with Zig for blazing fast DeepSeek V3 inference featuring Multi-Head Latent Attention!**
*Architecturally complete implementation of DeepSeek V3's core innovation - Multi-Head Latent Attention - ready for validation and testing.*
---
## ๐ License
This implementation is dual-licensed:
- **GPL-3.0**: Free for open source projects
- **Commercial**: Contact Triex for proprietary use
See [LICENSE-CODE](../LICENSE-CODE) and [LICENSE-COMMERCIAL](../LICENSE-COMMERCIAL) for details.