DeepSeek V3 in Zig

Language: Zig License: DeepSeek Status: Proposal
Performance: High Efficiency Platform: Cross Platform
Feature: SIMD Optimized Architecture: MoE Backend: Customizable

# DeepZig V3: A High-Performance LLM Architecture ## Overview A **DRAFT proposal & theoretical implementation** for implementing DeepSeek V3 in Zig to create a high-performance, web-ready LLM inference engine. This leverages Zig's unique advantages for systems programming while targeting modern deployment scenarios. **✅ Status: MLA ATTENTION ARCHITECTURE COMPLETE** ✅ **Core architecture theoretically functional with Zig 0.15.0-dev**, including: - ✅ **Multi-Head Latent Attention (MLA)** - Core DeepSeek V3 innovation architecturally implemented - ✅ **Complete Transformer Architecture** with RMS normalization, SwiGLU, MoE integration - ✅ **RoPE (Rotary Position Encoding)** with pre-computed embeddings - ✅ **KV Cache** for efficient autoregressive inference - ✅ HTTP server framework (basic structure) - ✅ SIMD-optimized tensor operations (draft implementation) - ✅ Cross-platform backend architecture - ✅ Initial memory management - ✅ **Apple Silicon M-series detection** (hardware detection via sysctl) - ✅ Comprehensive build system draft - ✅ **BLAS integration working** (Apple Accelerate backend functional) - ✅ **Improved matrix operations** (1000+ GFLOPS performance on an M1 Macbook) - ⚠️ **THEORETICALLY SOUND FOUNDATION** - Requires validation with real model weights **Performance Update**: ~~Current naive algorithms are ~1000x slower than optimized BLAS~~ **MLA attention architecture with BLAS integration now complete.** Matrix multiplication: **2.1ms for 1024×1024** at **1143 GFLOPS**, with peak **1143 GFLOPS at 512×512** on an M1 MacBook Pro under heavy load. This represents a ~**3000x speedup** over our initial naive implementation. See [experimental benchmarks](experimental/README.md#performance-notes) for detailed performance data. **⚠️ Important**: This is a **theoretical implementation** following DeepSeek V3 paper specifications. Architecture is complete and passes tests, but requires validation with real model weights and output verification. ## Why This Matters Current LLM inference is dominated by Python/PyTorch, which introduces: - **Garbage collection pauses** during generation - **Runtime overhead** from dynamic dispatch - **Complex deployment** with heavy runtimes - **Platform lock-in** due to dependency complexity **Progress Update**: Our implementation now includes **complete Multi-Head Latent Attention architecture** with optimized BLAS acceleration - the first architectural implementation of this DeepSeek V3 innovation. ## Expected Benefits vs Current Reality | Aspect | Current (PyTorch) | Target (Zig) | **Current Achievement** | |--------|------------------|--------------|-------------------------| | Cold start | 10-30s | **< 2s** | *Not measured* | | Memory usage | 20-40GB | **< 16GB** | *16GB+ for basic ops* | | Dependencies | ~2GB runtime | **Single binary** | ✅ **Single binary** | | Deployment | Complex | **Copy & run** | ✅ **Copy & run** | | Matrix Mul (1024×1024) | ~1ms (optimized) | **< 1ms** | ✅ **2.2ms (977 GFLOPS)** | | Peak Performance | ~1500 GFLOPS | **> 1000 GFLOPS** | ✅ **1143 GFLOPS** | | **MLA Attention** | ❌ Not available | **✅ Implemented** | ✅ **Architecture Complete** | *Benchmarked on Apple M1 MacBook Pro under heavy load* ## Why Zig? **Performance**: Zero-cost abstractions, compile-time optimization, direct hardware access
**Simplicity**: Single static binary, no runtime dependencies, cross-compilation built-in
**Web-First**: Native HTTP server, WebAssembly compilation, efficient memory management ## Proposed Architecture ``` ┌─────────────────┐ ┌──────────────────┐ ┌─────────────────┐ │ Web Layer │ │ Core Engine │ │ Backends │ │ │ │ │ │ │ │ ├─ HTTP API │◄──►│ ├─ 🧠 MLA │◄──►│ ├─ CPU (SIMD) │ │ ├─ WebSocket │ │ ├─ Transformer │ │ ├─ Metal (macOS)│ │ ├─ Rate Limit │ │ ├─ MoE Routing │ │ ├─ CUDA (Linux) │ │ └─ Auth │ │ └─ Tokenizer │ │ └─ WebGPU │ └─────────────────┘ └──────────────────┘ └─────────────────┘ ``` ## Draft Web API Framework ### Planned Endpoints (Basic Structure Implemented) - `POST /v1/chat/completions` - OpenAI-compatible chat API - `POST /v1/completions` - Text completion - `GET /v1/models` - List available models - `GET /health` - Service health check - `WebSocket /ws` - Streaming inference (planned) ### Deployment Vision - **Static binaries** - Single file deployment, no dependencies - **Direct VPS deployment** - Copy binary and run with systemd - **Edge devices** - ARM/RISC-V cross-compilation - **Serverless functions** - Minimal cold start with static linking - **WebAssembly** - Browser inference without additional runtime ## Implementation Plan Status ### Phase 1: Foundation ✅ **DRAFT COMPLETE** - [x] Set up Zig project structure - [x] Implement basic tensor operations with SIMD - [x] Create memory management system (arena allocators) - [x] Build HTTP server framework - [x] **Apple Silicon detection via sysctl calls** - [x] **Updated to Zig 0.15.0-dev - compiles cleanly** - [x] **Benchmark suite** showing current performance - [x] **BLAS integration working** - Apple Accelerate backend functional - [x] **Improved matrix performance** - 1000+ GFLOPS operations on an M1 Macbook ### Phase 2: Core Model ✅ **ARCHITECTURALLY COMPLETE** - [x] **Multi-Head Latent Attention (MLA)** - Core innovation architecturally implemented - [x] **Complete transformer layers** with RMS norm, SwiGLU, residual connections - [x] **RoPE (Rotary Position Encoding)** with efficient pre-computed embeddings - [x] **KV Cache** for autoregressive inference optimization - [x] **MoE integration architecture** (expert routing stub implemented) ### Phase 3: Validation & Testing 🎯 **NEXT PRIORITY** - [ ] **Real model weight loading** (safetensors/HuggingFace format) - [ ] **Output validation** against reference PyTorch implementation - [ ] **Numerical accuracy testing** with known inputs/outputs - [ ] **End-to-end inference verification** ### Phase 4: Implementation Completion - [ ] **Complete MoE expert routing** and load balancing - [ ] **BPE Tokenizer** implementation - [ ] **Generation loop** with sampling strategies - [ ] **Model configuration loading** from HuggingFace config.json ### Phase 5: Backends (IN PROGRESS) - [ ] Optimize CPU backend with AVX/NEON - [ ] Integrate Metal for Apple Silicon - [ ] Add CUDA support for NVIDIA GPUs - [ ] Implement WebGPU for browsers ### Phase 6: Web Integration (DRAFT STRUCTURE) - [x] Complete HTTP API implementation (basic structure) - [ ] Add WebSocket streaming - [ ] Build authentication/rate limiting - [ ] Create deployment tooling ## Technical Achievements ### ✅ Multi-Head Latent Attention (MLA) **The key innovation of DeepSeek V3 - now architecturally complete:** - **Latent space projections**: Efficient key-value computation through lower-dimensional latent space - **RoPE integration**: Proper positional encoding with pre-computed embeddings - **BLAS acceleration**: All matrix operations leverage optimized linear algebra libraries - **KV caching**: Efficient autoregressive inference with proper memory management **Performance Impact**: Reduces memory usage and computational overhead compared to standard multi-head attention while maintaining model quality. **⚠️ Validation Required**: Architecture follows paper specifications but needs validation with real DeepSeek V3 weights. ### ✅ Complete Transformer Architecture - **RMS Layer Normalization**: Following DeepSeek V3 specifications - **SwiGLU Activation**: Gate/Up/Down projections with SiLU activation function - **Residual connections**: Proper gradient flow through transformer layers - **MoE integration**: Architecture ready for expert routing and selection ## Platform-Specific Opportunities ### Apple Silicon (M-Series) ✅ **MLA Implementation Working** - **Metal Performance Shaders** integration for matrix operations (planned) - **AMX instruction set** access for accelerated linear algebra (future) - **Unified memory architecture** exploitation for zero-copy transfers - **Power efficiency tuning** across P and E cores - **✅ Proper M1/M2/M3/M4 detection** via system calls - **✅ MLA attention with BLAS acceleration** delivering 1000+ GFLOPS *Current status: MLA attention implemented with BLAS acceleration, GPU acceleration planned.* ### x86_64 Architecture - **AVX-512 vectorization** with masked operations - **Cache-friendly memory layouts** for L1/L2/L3 optimization - **NUMA-aware allocation** and thread assignment - **Dynamic dispatch** based on runtime CPU feature detection ### NVIDIA GPUs - **CUDA integration** via efficient FFI bindings - **Tensor Core utilization** for mixed-precision operations - **Custom kernels** for attention mechanisms - **Memory pooling** for reduced allocation overhead ## Getting Started **Current Status**: This repository contains a **FUNCTIONAL IMPLEMENTATION** of DeepSeek V3's core architecture. ### For the Current Zig Implementation: ```bash # Clone this repository git clone https://github.com/Triex/DeepZig-V3 cd DeepSeek-V3-Zig/experimental # Build and test the implementation (requires Zig 0.15.0-dev) /Users/xx/.local/share/zigup/0.15.0-dev.703+597dd328e/files/zig build # Run the HTTP server (basic structure) /Users/xx/.local/share/zigup/0.15.0-dev.703+597dd328e/files/zig build run -- --port 8080 # Run benchmarks (see actual performance) /Users/xx/.local/share/zigup/0.15.0-dev.703+597dd328e/files/zig build bench # Test MLA attention implementation /Users/xx/.local/share/zigup/0.15.0-dev.703+597dd328e/files/zig build test ``` **📊 Performance Reality Check**: See [experimental/README.md](experimental/README.md) for comprehensive benchmarks and MLA implementation details. ## Development Approach Following established [Zig patterns](https://github.com/SuperAuguste/zig-patterns): - **Arena allocators** for request-scoped memory - **Error unions** for explicit error handling - **Comptime generics** for zero-cost abstractions - **SIMD vectors** for numerical computation Reference: [Zig Cookbook](https://zigcc.github.io/zig-cookbook/) for implementation patterns. ## Seeking Contributors This **ARCHITECTURALLY COMPLETE PROJECT** would benefit from expertise in: - **🧪 Validation & Testing** (comparing outputs with HuggingFace transformers) - **🔗 Model weight loading** (safetensors, HuggingFace format support) - **📝 BPE tokenization** (proper tokenizer implementation) - **🎯 Generation strategies** (sampling, beam search, nucleus sampling) - **🧮 MoE expert routing** (completing the Mixture of Experts implementation) - **GPU kernel optimization** (CUDA/Metal for MLA attention) - **ML model optimization** - **Web server development** - **Hardware-software co-design** ## Current Status & Next Steps **🧠 What's Working**: ✅ **Complete MLA attention architecture**, BLAS acceleration, transformer layers, compiles and runs with excellent theoretical performance **⚠️ What's Missing**: Real weight loading, output validation, tokenization, generation loop, MoE expert routing **📊 Performance Status**: ✅ **MLA architecture with 1000+ GFLOPS** (theoretically sound core) **🎯 Next Priority**: **Validation phase** - load real weights, compare outputs, verify correctness See [experimental implementation](experimental/) for technical details, MLA architecture, and current benchmarks. ## References - [DeepZig V3 (Experimental Implementation)](experimental/) - **Current theoretical MLA implementation** - [DeepSeek V3 Paper](https://arxiv.org/abs/2412.19437) - Original model architecture - [Zig Language](https://ziglang.org/) - Language documentation - [Awesome Zig](https://github.com/C-BJ/awesome-zig) - Community resources - [Zig Patterns](https://github.com/SuperAuguste/zig-patterns) - Common idioms - [ZML](https://github.com/zml/zml) - Zig Inference Stack - [LLaMA.cpp](https://github.com/ggerganov/llama.cpp) - C++ Inference Engine - [DeepZig Consciousness](https://github.com/Triex/DeepZig-Consciousness) - Research goal/end game --- **Status**: 🎯 **MLA ATTENTION ARCHITECTURE COMPLETE** - Core DeepSeek V3 innovation theoretically functional with 1000+ GFLOPS performance ([see benchmarks](experimental/README.md#performance-notes))
**Vision**: **First architectural implementation of Multi-Head Latent Attention** ready for validation and advanced AI reasoning research **⚠️ Important**: This is now a **theoretical implementation** with complete MLA attention architecture. Ready for validation testing and real model weight loading. --- ## 📜 Licensing ### Dual License: GPL-3.0 OR Commercial DeepZig V3 is available under a **dual license model**: #### 🔓 Open Source License (GPL-3.0) - ✅ **Free for open source projects** that comply with GPL-3.0 - ✅ **Academic/research use** fully permitted - ✅ **Personal/educational** use unrestricted - ⚠️ **Copyleft requirement**: Derivative works must also be GPL-3.0 #### 🔒 Commercial License - 🏢 **Commercial/proprietary use** requires separate license - 💰 **Closed-source products** need commercial agreement - 🤝 **Contact TriexDev** for commercial licensing terms - ⚡ **Enterprise support** available ### When You Need Commercial License: - Building proprietary/closed-source products - Don't want to release your code under GPL-3.0 - Need warranty/support guarantees - Want to distribute without copyleft obligations ### Contact for Commercial License: - **GitHub**: [@Triex](https://github.com/Triex) - **Email**: hi@triex.dev - Commercial licensing inquiries welcome ---