Merge pull request #193 from enochkan/main

Add docstrings to functions in inference modules for better clarity
This commit is contained in:
Huang Panpan 2025-01-07 14:02:11 +08:00 committed by GitHub
commit fdbd5be754
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
6 changed files with 563 additions and 1 deletions

6
.gitignore vendored
View File

@ -165,4 +165,8 @@ cython_debug/
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
# and can be added to the global gitignore or merged into this file. For a more nuclear
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
#.idea/
#.idea/
.vscode/*
.DS_Store

View File

@ -31,6 +31,18 @@ mapping = {
def main(hf_ckpt_path, save_path, n_experts, mp):
"""
Converts and saves model checkpoint files into a specified format.
Args:
hf_ckpt_path (str): Path to the directory containing the input checkpoint files.
save_path (str): Path to the directory where the converted checkpoint files will be saved.
n_experts (int): Total number of experts in the model.
mp (int): Model parallelism factor.
Returns:
None
"""
torch.set_num_threads(8)
n_local_experts = n_experts // mp
state_dicts = [{} for _ in range(mp)]

View File

@ -10,6 +10,25 @@ from safetensors.torch import load_file, save_file
from kernel import weight_dequant
def main(fp8_path, bf16_path):
"""
Converts FP8 weights to BF16 and saves the converted weights.
This function reads FP8 weights from the specified directory, converts them to BF16,
and saves the converted weights to another specified directory. It also updates the
model index file to reflect the changes.
Args:
fp8_path (str): The path to the directory containing the FP8 weights and model index file.
bf16_path (str): The path to the directory where the converted BF16 weights will be saved.
Raises:
KeyError: If a required scale_inv tensor is missing for a weight.
Notes:
- The function assumes that the FP8 weights are stored in safetensor files.
- The function caches loaded safetensor files to optimize memory usage.
- The function updates the model index file to remove references to scale_inv tensors.
"""
torch.set_default_dtype(torch.bfloat16)
os.makedirs(bf16_path, exist_ok=True)
model_index_file = os.path.join(fp8_path, "model.safetensors.index.json")
@ -23,6 +42,18 @@ def main(fp8_path, bf16_path):
# Helper function to get tensor from the correct file
def get_tensor(tensor_name):
"""
Retrieves a tensor from the cached safetensor files or loads it from disk if not cached.
Args:
tensor_name (str): The name of the tensor to retrieve.
Returns:
torch.Tensor: The retrieved tensor.
Raises:
KeyError: If the tensor does not exist in the safetensor file.
"""
file_name = weight_map[tensor_name]
if file_name not in loaded_files:
file_path = os.path.join(fp8_path, file_name)

View File

@ -12,6 +12,16 @@ from model import Transformer, ModelArgs
def sample(logits, temperature: float = 1.0):
"""
Samples a token from the logits using temperature scaling.
Args:
logits (torch.Tensor): The logits tensor for token predictions.
temperature (float, optional): Temperature for scaling logits. Defaults to 1.0.
Returns:
torch.Tensor: The sampled token.
"""
logits = logits / max(temperature, 1e-5)
probs = torch.softmax(logits, dim=-1)
return probs.div_(torch.empty_like(probs).exponential_(1)).argmax(dim=-1)
@ -25,6 +35,19 @@ def generate(
eos_id: int,
temperature: float = 1.0
) -> List[List[int]]:
"""
Generates new tokens based on the given prompt tokens using the specified model.
Args:
model (Transformer): The transformer model used for token generation.
prompt_tokens (List[List[int]]): A list of lists containing the prompt tokens for each sequence.
max_new_tokens (int): The maximum number of new tokens to generate.
eos_id (int): The end-of-sequence token ID.
temperature (float, optional): The temperature value for sampling. Defaults to 1.0.
Returns:
List[List[int]]: A list of lists containing the generated tokens for each sequence.
"""
prompt_lens = [len(t) for t in prompt_tokens]
assert max(prompt_lens) <= model.max_seq_len
total_len = min(model.max_seq_len, max_new_tokens + max(prompt_lens))
@ -63,6 +86,17 @@ def main(
max_new_tokens: int = 100,
temperature: float = 1.0,
) -> None:
"""
Main function to load the model and perform interactive or batch text generation.
Args:
ckpt_path (str): Path to the model checkpoint directory.
config (str): Path to the model configuration file.
input_file (str, optional): Path to a file containing input prompts. Defaults to "".
interactive (bool, optional): Whether to run in interactive mode. Defaults to True.
max_new_tokens (int, optional): Maximum number of new tokens to generate. Defaults to 100.
temperature (float, optional): Temperature for sampling. Defaults to 1.0.
"""
world_size = int(os.getenv("WORLD_SIZE", "1"))
rank = int(os.getenv("RANK", "0"))
local_rank = int(os.getenv("LOCAL_RANK", "0"))
@ -125,6 +159,20 @@ def main(
if __name__ == "__main__":
"""
Command-line interface for distributed text generation.
Arguments:
--ckpt-path (str): Path to the model checkpoint directory.
--config (str): Path to the model configuration file.
--input-file (str, optional): File containing prompts for batch processing.
--interactive (bool, optional): Enable interactive mode for generating text.
--max-new-tokens (int, optional): Maximum number of new tokens to generate. Defaults to 200.
--temperature (float, optional): Temperature for sampling. Defaults to 0.2.
Raises:
AssertionError: If neither input-file nor interactive mode is specified.
"""
parser = ArgumentParser()
parser.add_argument("--ckpt-path", type=str, required=True)
parser.add_argument("--config", type=str, required=True)

View File

@ -8,6 +8,18 @@ from triton import Config
@triton.jit
def act_quant_kernel(x_ptr, y_ptr, s_ptr, BLOCK_SIZE: tl.constexpr):
"""
Quantizes the input tensor `x_ptr` and stores the result in `y_ptr` and the scaling factor in `s_ptr`.
Args:
x_ptr (triton.Pointer): Pointer to the input tensor.
y_ptr (triton.Pointer): Pointer to the output tensor where quantized values will be stored.
s_ptr (triton.Pointer): Pointer to the output tensor where scaling factors will be stored.
BLOCK_SIZE (tl.constexpr): The size of the block to be processed by each program instance.
Returns:
None
"""
pid = tl.program_id(axis=0)
offs = pid * BLOCK_SIZE + tl.arange(0, BLOCK_SIZE)
x = tl.load(x_ptr + offs).to(tl.float32)
@ -19,6 +31,18 @@ def act_quant_kernel(x_ptr, y_ptr, s_ptr, BLOCK_SIZE: tl.constexpr):
def act_quant(x: torch.Tensor, block_size: int = 128) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Quantizes the input tensor `x` using block-wise quantization.
Args:
x (torch.Tensor): The input tensor to be quantized. Must be contiguous and its last dimension size must be divisible by `block_size`.
block_size (int, optional): The size of the blocks to be used for quantization. Default is 128.
Returns:
Tuple[torch.Tensor, torch.Tensor]: A tuple containing:
- The quantized tensor with dtype `torch.float8_e4m3fn`.
- A tensor of scaling factors with dtype `torch.float32`.
"""
assert x.is_contiguous()
assert x.size(-1) % block_size == 0
y = torch.empty_like(x, dtype=torch.float8_e4m3fn)
@ -30,6 +54,20 @@ def act_quant(x: torch.Tensor, block_size: int = 128) -> Tuple[torch.Tensor, tor
@triton.jit
def weight_dequant_kernel(x_ptr, s_ptr, y_ptr, M, N, BLOCK_SIZE: tl.constexpr):
"""
Dequantizes weights using the provided scaling factors and stores the result.
Args:
x_ptr (tl.pointer): Pointer to the quantized weights.
s_ptr (tl.pointer): Pointer to the scaling factors.
y_ptr (tl.pointer): Pointer to the output buffer for dequantized weights.
M (int): Number of rows in the weight matrix.
N (int): Number of columns in the weight matrix.
BLOCK_SIZE (tl.constexpr): Size of the block for tiling.
Returns:
None
"""
pid_m = tl.program_id(axis=0)
pid_n = tl.program_id(axis=1)
n = tl.cdiv(N, BLOCK_SIZE)
@ -44,6 +82,20 @@ def weight_dequant_kernel(x_ptr, s_ptr, y_ptr, M, N, BLOCK_SIZE: tl.constexpr):
def weight_dequant(x: torch.Tensor, s: torch.Tensor, block_size: int = 128) -> torch.Tensor:
"""
Dequantizes the given weight tensor using the provided scale tensor.
Args:
x (torch.Tensor): The quantized weight tensor of shape (M, N).
s (torch.Tensor): The scale tensor of shape (M, N).
block_size (int, optional): The block size to use for dequantization. Defaults to 128.
Returns:
torch.Tensor: The dequantized weight tensor of the same shape as `x`.
Raises:
AssertionError: If `x` or `s` are not contiguous or if their dimensions are not 2.
"""
assert x.is_contiguous() and s.is_contiguous()
assert x.dim() == 2 and s.dim() == 2
M, N = x.size()
@ -66,6 +118,25 @@ def fp8_gemm_kernel(a_ptr, b_ptr, c_ptr,
BLOCK_SIZE_M: tl.constexpr,
BLOCK_SIZE_N: tl.constexpr,
BLOCK_SIZE_K: tl.constexpr):
"""
Performs a matrix multiplication operation on FP8 matrices with scaling factors.
Args:
a_ptr (tl.tensor): Pointer to the first input matrix A.
b_ptr (tl.tensor): Pointer to the second input matrix B.
c_ptr (tl.tensor): Pointer to the output matrix C.
a_s_ptr (tl.tensor): Pointer to the scaling factors for matrix A.
b_s_ptr (tl.tensor): Pointer to the scaling factors for matrix B.
M (int): Number of rows in matrix A and C.
N (tl.constexpr): Number of columns in matrix B and C.
K (tl.constexpr): Number of columns in matrix A and rows in matrix B.
BLOCK_SIZE_M (tl.constexpr): Block size for the M dimension.
BLOCK_SIZE_N (tl.constexpr): Block size for the N dimension.
BLOCK_SIZE_K (tl.constexpr): Block size for the K dimension.
Returns:
None
"""
pid_m = tl.program_id(axis=0)
pid_n = tl.program_id(axis=1)
k = tl.cdiv(K, BLOCK_SIZE_K)
@ -97,6 +168,18 @@ def fp8_gemm_kernel(a_ptr, b_ptr, c_ptr,
def fp8_gemm(a: torch.Tensor, a_s: torch.Tensor, b: torch.Tensor, b_s: torch.Tensor):
"""
Perform a matrix multiplication using FP8 precision.
Args:
a (torch.Tensor): The first input matrix, must be contiguous.
a_s (torch.Tensor): The scaling factor for the first input matrix, must be contiguous.
b (torch.Tensor): The second input matrix, must be contiguous.
b_s (torch.Tensor): The scaling factor for the second input matrix, must be contiguous.
Returns:
torch.Tensor: The result of the matrix multiplication.
"""
assert a.is_contiguous() and b.is_contiguous()
assert a_s.is_contiguous() and b_s.is_contiguous()
K = a.size(-1)

View File

@ -18,6 +18,39 @@ attn_impl: Literal["naive", "absorb"] = "absorb"
@dataclass
class ModelArgs:
"""
Data class for defining model arguments and hyperparameters.
Attributes:
max_batch_size (int): Maximum batch size.
max_seq_len (int): Maximum sequence length.
dtype (Literal["bf16", "fp8"]): Data type for computations.
vocab_size (int): Vocabulary size.
dim (int): Model dimension.
inter_dim (int): Intermediate dimension for MLP layers.
moe_inter_dim (int): Intermediate dimension for MoE layers.
n_layers (int): Number of transformer layers.
n_dense_layers (int): Number of dense layers in the model.
n_heads (int): Number of attention heads.
n_routed_experts (int): Number of routed experts for MoE layers.
n_shared_experts (int): Number of shared experts for MoE layers.
n_activated_experts (int): Number of activated experts in MoE layers.
n_expert_groups (int): Number of expert groups.
n_limited_groups (int): Number of limited groups for MoE routing.
score_func (Literal["softmax", "sigmoid"]): Scoring function for MoE routing.
route_scale (float): Scaling factor for routing scores.
q_lora_rank (int): LoRA rank for query projections.
kv_lora_rank (int): LoRA rank for key-value projections.
qk_nope_head_dim (int): Dimension for query-key projections without positional embeddings.
qk_rope_head_dim (int): Dimension for query-key projections with rotary embeddings.
v_head_dim (int): Dimension for value projections.
original_seq_len (int): Original sequence length.
rope_theta (float): Base for rotary positional encoding.
rope_factor (float): Scaling factor for extended sequence lengths.
beta_fast (int): Fast beta correction factor.
beta_slow (int): Slow beta correction factor.
mscale (float): Scaling factor for extended attention.
"""
max_batch_size: int = 8
max_seq_len: int = 4096 * 4
dtype: Literal["bf16", "fp8"] = "bf16"
@ -52,6 +85,13 @@ class ModelArgs:
class ParallelEmbedding(nn.Module):
"""
Embedding layer with parallelism support across distributed processes.
Args:
vocab_size (int): Vocabulary size.
dim (int): Embedding dimension.
"""
def __init__(self, vocab_size: int, dim: int):
super().__init__()
self.vocab_size = vocab_size
@ -63,6 +103,18 @@ class ParallelEmbedding(nn.Module):
self.weight = nn.Parameter(torch.empty(self.part_vocab_size, self.dim))
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""
Forward pass for parallel embedding layer.
Args:
x (torch.Tensor): Input tensor containing token indices.
Returns:
torch.Tensor: Embedded representations.
Raises:
ValueError: If `world_size` is not defined.
"""
if world_size > 1:
mask = (x < self.vocab_start_idx) | (x >= self.vocab_end_idx)
x = x - self.vocab_start_idx
@ -75,6 +127,27 @@ class ParallelEmbedding(nn.Module):
def linear(x: torch.Tensor, weight: torch.Tensor, bias: Optional[torch.Tensor] = None) -> torch.Tensor:
"""
Applies a linear transformation to the incoming data: y = xA^T + b.
This function supports specialized implementations based on quantization
and tensor formats.
Args:
x (torch.Tensor): The input tensor.
weight (torch.Tensor): The weight tensor. It may be quantized and
requires dequantization for certain cases.
bias (Optional[torch.Tensor]): The bias tensor to be added. Default is None.
Returns:
torch.Tensor: The result of the linear transformation, which may involve
quantization-aware computations depending on the input parameters.
Notes:
- If `weight` is quantized (e.g., `element_size() > 1`), a dequantized version
is used for computation.
- If `gemm_impl == "bf16"`, dequantization and a `bf16` GEMM operation are applied.
- For other cases, the function applies quantization to `x` and uses `fp8_gemm` for computation.
"""
if weight.element_size() > 1:
return F.linear(x, weight, bias)
elif gemm_impl == "bf16":
@ -89,6 +162,15 @@ def linear(x: torch.Tensor, weight: torch.Tensor, bias: Optional[torch.Tensor] =
class Linear(nn.Module):
"""
Custom linear layer with support for quantized weights and optional bias.
Args:
in_features (int): Number of input features.
out_features (int): Number of output features.
bias (bool): Whether to include a bias term. Defaults to False.
dtype (optional): Data type for the layer. Defaults to `torch.bfloat16`.
"""
dtype = torch.bfloat16
def __init__(self, in_features: int, out_features: int, bias: bool = False, dtype = None):
@ -108,27 +190,72 @@ class Linear(nn.Module):
self.register_parameter("bias", None)
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""
Forward pass for the custom linear layer.
Args:
x (torch.Tensor): Input tensor.
Returns:
torch.Tensor: Transformed tensor after linear computation.
"""
return linear(x, self.weight, self.bias)
class ColumnParallelLinear(Linear):
"""
Linear layer with column parallelism, splitting output features across distributed processes.
Args:
in_features (int): Number of input features.
out_features (int): Total number of output features.
bias (bool): Whether to include a bias term. Defaults to False.
dtype (optional): Data type for the layer. Defaults to `torch.bfloat16`.
"""
def __init__(self, in_features: int, out_features: int, bias: bool = False, dtype = None):
assert out_features % world_size == 0
self.part_out_features = out_features // world_size
super().__init__(in_features, self.part_out_features, bias, dtype)
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""
Forward pass for column parallel linear layer.
Args:
x (torch.Tensor): Input tensor.
Returns:
torch.Tensor: Transformed tensor with column-parallel computation.
"""
y = linear(x, self.weight, self.bias)
return y
class RowParallelLinear(Linear):
"""
Linear layer with row parallelism, splitting input features across distributed processes.
Args:
in_features (int): Total number of input features.
out_features (int): Number of output features.
bias (bool): Whether to include a bias term. Defaults to False.
dtype (optional): Data type for the layer. Defaults to `torch.bfloat16`.
"""
def __init__(self, in_features: int, out_features: int, bias: bool = False, dtype = None):
assert in_features % world_size == 0
self.part_in_features = in_features // world_size
super().__init__(self.part_in_features, out_features, bias, dtype)
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""
Forward pass for row parallel linear layer.
Args:
x (torch.Tensor): Input tensor.
Returns:
torch.Tensor: Transformed tensor with row-parallel computation.
"""
y = linear(x, self.weight)
if world_size > 1:
dist.all_reduce(y)
@ -138,6 +265,13 @@ class RowParallelLinear(Linear):
class RMSNorm(nn.Module):
"""
Root Mean Square Layer Normalization (RMSNorm).
Args:
dim (int): Dimension of the input tensor.
eps (float): Epsilon value for numerical stability. Defaults to 1e-6.
"""
def __init__(self, dim: int, eps: float = 1e-6):
super().__init__()
self.dim = dim
@ -145,10 +279,28 @@ class RMSNorm(nn.Module):
self.weight = nn.Parameter(torch.ones(dim))
def forward(self, x: torch.Tensor):
"""
Forward pass for RMSNorm.
Args:
x (torch.Tensor): Input tensor.
Returns:
torch.Tensor: Normalized tensor with the same shape as input.
"""
return F.rms_norm(x, (self.dim,), self.weight, self.eps)
def precompute_freqs_cis(args: ModelArgs) -> torch.Tensor:
"""
Precomputes frequency-based complex exponential values for rotary positional embeddings.
Args:
args (ModelArgs): Model arguments containing positional embedding parameters.
Returns:
torch.Tensor: Precomputed complex exponential values for positional embeddings.
"""
dim = args.qk_rope_head_dim
seqlen = args.max_seq_len
beta_fast = args.beta_fast
@ -157,14 +309,51 @@ def precompute_freqs_cis(args: ModelArgs) -> torch.Tensor:
factor = args.rope_factor
def find_correction_dim(num_rotations, dim, base, max_seq_len):
"""
Computes the correction dimension for a given number of rotations in the rotary positional embedding.
Args:
num_rotations (float): Number of rotations to compute the correction for.
dim (int): Dimensionality of the embedding space.
base (float): Base value for the exponential computation.
max_seq_len (int): Maximum sequence length.
Returns:
float: The correction dimension based on the input parameters.
"""
return dim * math.log(max_seq_len / (num_rotations * 2 * math.pi)) / (2 * math.log(base))
def find_correction_range(low_rot, high_rot, dim, base, max_seq_len):
"""
Computes the range of correction dimensions for rotary positional embeddings.
Args:
low_rot (float): Lower bound for the number of rotations.
high_rot (float): Upper bound for the number of rotations.
dim (int): Dimensionality of the embedding space.
base (float): Base value for the exponential computation.
max_seq_len (int): Maximum sequence length.
Returns:
Tuple[int, int]: The range of correction dimensions (low, high), clamped to valid indices.
"""
low = math.floor(find_correction_dim(low_rot, dim, base, max_seq_len))
high = math.ceil(find_correction_dim(high_rot, dim, base, max_seq_len))
return max(low, 0), min(high, dim-1)
def linear_ramp_factor(min, max, dim):
"""
Computes a linear ramp function used to smooth values between a minimum and maximum range.
Args:
min (float): Minimum value for the ramp function.
max (float): Maximum value for the ramp function.
dim (int): Dimensionality of the ramp tensor.
Returns:
torch.Tensor: A tensor of shape (dim,) with values linearly interpolated between 0 and 1,
clamped to the range [0, 1].
"""
if min == max:
max += 0.001
linear_func = (torch.arange(dim, dtype=torch.float32) - min) / (max - min)
@ -184,6 +373,16 @@ def precompute_freqs_cis(args: ModelArgs) -> torch.Tensor:
def apply_rotary_emb(x: torch.Tensor, freqs_cis: torch.Tensor) -> torch.Tensor:
"""
Applies rotary positional embeddings to the input tensor.
Args:
x (torch.Tensor): Input tensor with positional embeddings to be applied.
freqs_cis (torch.Tensor): Precomputed complex exponential values for positional embeddings.
Returns:
torch.Tensor: Tensor with rotary embeddings applied.
"""
dtype = x.dtype
x = torch.view_as_complex(x.float().view(*x.shape[:-1], -1, 2))
freqs_cis = freqs_cis.view(1, x.size(1), 1, x.size(-1))
@ -192,6 +391,21 @@ def apply_rotary_emb(x: torch.Tensor, freqs_cis: torch.Tensor) -> torch.Tensor:
class MLA(nn.Module):
"""
Multi-Headed Attention Layer (MLA).
Attributes:
dim (int): Dimensionality of the input features.
n_heads (int): Number of attention heads.
n_local_heads (int): Number of local attention heads for distributed systems.
q_lora_rank (int): Rank for low-rank query projection.
kv_lora_rank (int): Rank for low-rank key/value projection.
qk_nope_head_dim (int): Dimensionality of non-positional query/key projections.
qk_rope_head_dim (int): Dimensionality of rotary-positional query/key projections.
qk_head_dim (int): Total dimensionality of query/key projections.
v_head_dim (int): Dimensionality of value projections.
softmax_scale (float): Scaling factor for softmax in attention computation.
"""
def __init__(self, args: ModelArgs):
super().__init__()
self.dim = args.dim
@ -227,6 +441,18 @@ class MLA(nn.Module):
self.register_buffer("pe_cache", torch.zeros(args.max_batch_size, args.max_seq_len, self.qk_rope_head_dim), persistent=False)
def forward(self, x: torch.Tensor, start_pos: int, freqs_cis: torch.Tensor, mask: Optional[torch.Tensor]):
"""
Forward pass for the Multi-Headed Attention Layer (MLA).
Args:
x (torch.Tensor): Input tensor of shape (batch_size, seq_len, dim).
start_pos (int): Starting position in the sequence for caching.
freqs_cis (torch.Tensor): Precomputed complex exponential values for rotary embeddings.
mask (Optional[torch.Tensor]): Mask tensor to exclude certain positions from attention.
Returns:
torch.Tensor: Output tensor with the same shape as the input.
"""
bsz, seqlen, _ = x.size()
end_pos = start_pos + seqlen
if self.q_lora_rank == 0:
@ -269,18 +495,61 @@ class MLA(nn.Module):
class MLP(nn.Module):
"""
Multi-Layer Perceptron (MLP) used as a feed-forward layer.
Attributes:
w1 (nn.Module): Linear layer for input-to-hidden transformation.
w2 (nn.Module): Linear layer for hidden-to-output transformation.
w3 (nn.Module): Additional linear layer for feature transformation.
"""
def __init__(self, dim: int, inter_dim: int):
"""
Initializes the MLP layer.
Args:
dim (int): Input and output dimensionality.
inter_dim (int): Hidden layer dimensionality.
"""
super().__init__()
self.w1 = ColumnParallelLinear(dim, inter_dim)
self.w2 = RowParallelLinear(inter_dim, dim)
self.w3 = ColumnParallelLinear(dim, inter_dim)
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""
Forward pass for the MLP layer.
Args:
x (torch.Tensor): Input tensor.
Returns:
torch.Tensor: Output tensor after MLP computation.
"""
return self.w2(F.silu(self.w1(x)) * self.w3(x))
class Gate(nn.Module):
"""
Gating mechanism for routing inputs in a mixture-of-experts (MoE) model.
Attributes:
dim (int): Dimensionality of input features.
topk (int): Number of top experts activated for each input.
n_groups (int): Number of groups for routing.
topk_groups (int): Number of groups to route inputs to.
score_func (str): Scoring function ('softmax' or 'sigmoid').
route_scale (float): Scaling factor for routing weights.
weight (torch.nn.Parameter): Learnable weights for the gate.
bias (Optional[torch.nn.Parameter]): Optional bias term for the gate.
"""
def __init__(self, args: ModelArgs):
"""
Initializes the Gate module.
Args:
args (ModelArgs): Model arguments containing gating parameters.
"""
super().__init__()
self.dim = args.dim
self.topk = args.n_activated_experts
@ -292,6 +561,15 @@ class Gate(nn.Module):
self.bias = nn.Parameter(torch.empty(args.n_routed_experts)) if self.dim == 7168 else None
def forward(self, x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Forward pass for the gating mechanism.
Args:
x (torch.Tensor): Input tensor.
Returns:
Tuple[torch.Tensor, torch.Tensor]: Routing weights and selected expert indices.
"""
scores = linear(x, self.weight)
if self.score_func == "softmax":
scores = scores.softmax(dim=-1, dtype=torch.float32)
@ -318,18 +596,60 @@ class Gate(nn.Module):
class Expert(nn.Module):
"""
Expert layer for Mixture-of-Experts (MoE) models.
Attributes:
w1 (nn.Module): Linear layer for input-to-hidden transformation.
w2 (nn.Module): Linear layer for hidden-to-output transformation.
w3 (nn.Module): Additional linear layer for feature transformation.
"""
def __init__(self, dim: int, inter_dim: int):
"""
Initializes the Expert layer.
Args:
dim (int): Input and output dimensionality.
inter_dim (int): Hidden layer dimensionality.
"""
super().__init__()
self.w1 = Linear(dim, inter_dim)
self.w2 = Linear(inter_dim, dim)
self.w3 = Linear(dim, inter_dim)
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""
Forward pass for the Expert layer.
Args:
x (torch.Tensor): Input tensor.
Returns:
torch.Tensor: Output tensor after expert computation.
"""
return self.w2(F.silu(self.w1(x)) * self.w3(x))
class MoE(nn.Module):
"""
Mixture-of-Experts (MoE) module.
Attributes:
dim (int): Dimensionality of input features.
n_routed_experts (int): Total number of experts in the model.
n_local_experts (int): Number of experts handled locally in distributed systems.
n_activated_experts (int): Number of experts activated for each input.
gate (nn.Module): Gating mechanism to route inputs to experts.
experts (nn.ModuleList): List of expert modules.
shared_experts (nn.Module): Shared experts applied to all inputs.
"""
def __init__(self, args: ModelArgs):
"""
Initializes the MoE module.
Args:
args (ModelArgs): Model arguments containing MoE parameters.
"""
super().__init__()
self.dim = args.dim
assert args.n_routed_experts % world_size == 0
@ -344,6 +664,15 @@ class MoE(nn.Module):
self.shared_experts = MLP(args.dim, args.n_shared_experts * args.moe_inter_dim)
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""
Forward pass for the MoE module.
Args:
x (torch.Tensor): Input tensor.
Returns:
torch.Tensor: Output tensor after expert routing and computation.
"""
shape = x.size()
x = x.view(-1, self.dim)
weights, indices = self.gate(x)
@ -362,7 +691,23 @@ class MoE(nn.Module):
class Block(nn.Module):
"""
Transformer block combining attention and feed-forward layers.
Attributes:
attn (nn.Module): Attention layer (MLA).
ffn (nn.Module): Feed-forward network (MLP or MoE).
attn_norm (nn.Module): Layer normalization for attention.
ffn_norm (nn.Module): Layer normalization for feed-forward network.
"""
def __init__(self, layer_id: int, args: ModelArgs):
"""
Initializes the Transformer block.
Args:
layer_id (int): Layer index in the transformer.
args (ModelArgs): Model arguments containing block parameters.
"""
super().__init__()
self.attn = MLA(args)
self.ffn = MLP(args.dim, args.inter_dim) if layer_id < args.n_dense_layers else MoE(args)
@ -370,13 +715,42 @@ class Block(nn.Module):
self.ffn_norm = RMSNorm(args.dim)
def forward(self, x: torch.Tensor, start_pos: int, freqs_cis: torch.Tensor, mask: Optional[torch.Tensor]) -> torch.Tensor:
"""
Forward pass for the Transformer block.
Args:
x (torch.Tensor): Input tensor.
start_pos (int): Starting position in the sequence.
freqs_cis (torch.Tensor): Precomputed complex exponential values for rotary embeddings.
mask (Optional[torch.Tensor]): Mask tensor to exclude certain positions from attention.
Returns:
torch.Tensor: Output tensor after block computation.
"""
x = x + self.attn(self.attn_norm(x), start_pos, freqs_cis, mask)
x = x + self.ffn(self.ffn_norm(x))
return x
class Transformer(nn.Module):
"""
Transformer model with positional embeddings, multiple layers, and output projection.
Attributes:
max_seq_len (int): Maximum sequence length for the transformer.
embed (nn.Module): Embedding layer for input tokens.
layers (torch.nn.ModuleList): List of transformer blocks.
norm (nn.Module): Layer normalization applied after all blocks.
head (nn.Module): Output projection layer mapping to vocabulary size.
freqs_cis (torch.Tensor): Precomputed complex exponential values for rotary embeddings.
"""
def __init__(self, args: ModelArgs):
"""
Initializes the Transformer model.
Args:
args (ModelArgs): Model arguments containing transformer parameters.
"""
global world_size, rank
world_size = dist.get_world_size() if dist.is_initialized() else 1
rank = dist.get_rank() if dist.is_initialized() else 0
@ -393,6 +767,16 @@ class Transformer(nn.Module):
@torch.inference_mode()
def forward(self, tokens: torch.Tensor, start_pos: int = 0):
"""
Forward pass for the Transformer model.
Args:
tokens (torch.Tensor): Input tensor of token IDs with shape (batch_size, seq_len).
start_pos (int, optional): Starting position in the sequence for rotary embeddings. Defaults to 0.
Returns:
torch.Tensor: Logits tensor of shape (batch_size, vocab_size).
"""
seqlen = tokens.size(1)
h = self.embed(tokens)
freqs_cis = self.freqs_cis[start_pos:start_pos+seqlen]