mirror of
https://github.com/deepseek-ai/DeepSeek-V3.git
synced 2025-04-19 10:08:59 -04:00
Critical Improvements for Model Correctness, Efficiency, and Robustness
This commit is contained in:
parent
f09f5fa321
commit
d257cbe733
@ -1,178 +1,122 @@
|
||||
import os
|
||||
import json
|
||||
from argparse import ArgumentParser
|
||||
from typing import List
|
||||
|
||||
from typing import List, Optional
|
||||
import torch
|
||||
import torch.distributed as dist
|
||||
from transformers import AutoTokenizer
|
||||
from safetensors.torch import load_model
|
||||
|
||||
from model import Transformer, ModelArgs
|
||||
|
||||
|
||||
def sample(logits, temperature: float = 1.0):
|
||||
"""
|
||||
Samples a token from the logits using temperature scaling.
|
||||
|
||||
Args:
|
||||
logits (torch.Tensor): The logits tensor for token predictions.
|
||||
temperature (float, optional): Temperature for scaling logits. Defaults to 1.0.
|
||||
|
||||
Returns:
|
||||
torch.Tensor: The sampled token.
|
||||
"""
|
||||
logits = logits / max(temperature, 1e-5)
|
||||
probs = torch.softmax(logits, dim=-1)
|
||||
return probs.div_(torch.empty_like(probs).exponential_(1)).argmax(dim=-1)
|
||||
|
||||
def sample(logits: torch.Tensor, temperature: float = 1.0, top_k: Optional[int] = None, top_p: Optional[float] = None) -> torch.Tensor:
|
||||
if temperature <= 1e-5:
|
||||
return logits.argmax(dim=-1)
|
||||
logits = logits / temperature
|
||||
if top_k is not None:
|
||||
v, _ = torch.topk(logits, min(top_k, logits.size(-1)))
|
||||
logits[logits < v[:, [-1]]] = -float('Inf')
|
||||
if top_p is not None and top_p < 1.0:
|
||||
sorted_logits, sorted_indices = torch.sort(logits, descending=True)
|
||||
cum_probs = torch.cumsum(torch.softmax(sorted_logits, dim=-1), dim=-1)
|
||||
remove_mask = cum_probs > top_p
|
||||
remove_mask[..., 1:] = remove_mask[..., :-1].clone()
|
||||
remove_mask[..., 0] = False
|
||||
remove_indices = remove_mask.scatter(-1, sorted_indices, remove_mask)
|
||||
logits[remove_indices] = -float('Inf')
|
||||
gumbel_noise = -torch.log(-torch.log(torch.rand_like(logits) + 1e-10))
|
||||
return (logits + gumbel_noise).argmax(dim=-1)
|
||||
|
||||
@torch.inference_mode()
|
||||
def generate(
|
||||
model: Transformer,
|
||||
prompt_tokens: List[List[int]],
|
||||
max_new_tokens: int,
|
||||
eos_id: int,
|
||||
temperature: float = 1.0
|
||||
) -> List[List[int]]:
|
||||
"""
|
||||
Generates new tokens based on the given prompt tokens using the specified model.
|
||||
|
||||
Args:
|
||||
model (Transformer): The transformer model used for token generation.
|
||||
prompt_tokens (List[List[int]]): A list of lists containing the prompt tokens for each sequence.
|
||||
max_new_tokens (int): The maximum number of new tokens to generate.
|
||||
eos_id (int): The end-of-sequence token ID.
|
||||
temperature (float, optional): The temperature value for sampling. Defaults to 1.0.
|
||||
|
||||
Returns:
|
||||
List[List[int]]: A list of lists containing the generated tokens for each sequence.
|
||||
"""
|
||||
def generate(model: Transformer, prompt_tokens: List[List[int]], max_new_tokens: int, eos_id: int, temperature: float = 1.0, top_k: Optional[int] = None, top_p: Optional[float] = None) -> List[List[int]]:
|
||||
model.reset_cache()
|
||||
prompt_lens = [len(t) for t in prompt_tokens]
|
||||
assert max(prompt_lens) <= model.max_seq_len, f"Prompt length exceeds model maximum sequence length (max_seq_len={model.max_seq_len})"
|
||||
total_len = min(model.max_seq_len, max_new_tokens + max(prompt_lens))
|
||||
tokens = torch.full((len(prompt_tokens), total_len), -1, dtype=torch.long, device="cuda")
|
||||
for i, t in enumerate(prompt_tokens):
|
||||
tokens[i, :len(t)] = torch.tensor(t, dtype=torch.long, device="cuda")
|
||||
tokens[i, :len(t)] = torch.tensor(t, device="cuda")
|
||||
prev_pos = 0
|
||||
finished = torch.tensor([False] * len(prompt_tokens), device="cuda")
|
||||
finished = torch.zeros(len(prompt_tokens), dtype=torch.bool, device="cuda")
|
||||
prompt_mask = tokens != -1
|
||||
for cur_pos in range(min(prompt_lens), total_len):
|
||||
logits = model.forward(tokens[:, prev_pos:cur_pos], prev_pos)
|
||||
if temperature > 0:
|
||||
next_token = sample(logits, temperature)
|
||||
else:
|
||||
next_token = logits.argmax(dim=-1)
|
||||
next_token = sample(logits, temperature, top_k, top_p)
|
||||
next_token = torch.where(prompt_mask[:, cur_pos], tokens[:, cur_pos], next_token)
|
||||
tokens[:, cur_pos] = next_token
|
||||
finished |= torch.logical_and(~prompt_mask[:, cur_pos], next_token == eos_id)
|
||||
finished |= (~prompt_mask[:, cur_pos] & (next_token == eos_id))
|
||||
prev_pos = cur_pos
|
||||
if finished.all():
|
||||
break
|
||||
completion_tokens = []
|
||||
for i, toks in enumerate(tokens.tolist()):
|
||||
toks = toks[prompt_lens[i]:prompt_lens[i]+max_new_tokens]
|
||||
if eos_id in toks:
|
||||
toks = toks[:toks.index(eos_id)]
|
||||
completion_tokens.append(toks)
|
||||
return completion_tokens
|
||||
completions = []
|
||||
for i, seq in enumerate(tokens.tolist()):
|
||||
seq = seq[prompt_lens[i]:prompt_lens[i]+max_new_tokens]
|
||||
completions.append(seq[:seq.index(eos_id)] if eos_id in seq else seq)
|
||||
return completions
|
||||
|
||||
|
||||
def main(
|
||||
ckpt_path: str,
|
||||
config: str,
|
||||
input_file: str = "",
|
||||
interactive: bool = True,
|
||||
max_new_tokens: int = 100,
|
||||
temperature: float = 1.0,
|
||||
) -> None:
|
||||
"""
|
||||
Main function to load the model and perform interactive or batch text generation.
|
||||
|
||||
Args:
|
||||
ckpt_path (str): Path to the model checkpoint directory.
|
||||
config (str): Path to the model configuration file.
|
||||
input_file (str, optional): Path to a file containing input prompts. Defaults to "".
|
||||
interactive (bool, optional): Whether to run in interactive mode. Defaults to True.
|
||||
max_new_tokens (int, optional): Maximum number of new tokens to generate. Defaults to 100.
|
||||
temperature (float, optional): Temperature for sampling. Defaults to 1.0.
|
||||
"""
|
||||
def main(ckpt_path: str, config: str, input_file: str = "", interactive: bool = True, max_new_tokens: int = 100, temperature: float = 0.2, top_k: Optional[int] = None, top_p: Optional[float] = None) -> None:
|
||||
if not os.path.isdir(ckpt_path):
|
||||
raise FileNotFoundError(f"Checkpoint directory missing: {ckpt_path}")
|
||||
if not os.path.isfile(config):
|
||||
raise FileNotFoundError(f"Config file missing: {config}")
|
||||
world_size = int(os.getenv("WORLD_SIZE", "1"))
|
||||
rank = int(os.getenv("RANK", "0"))
|
||||
local_rank = int(os.getenv("LOCAL_RANK", "0"))
|
||||
if world_size > 1:
|
||||
dist.init_process_group("nccl")
|
||||
global print
|
||||
dist.init_process_group("nccl", init_method="env://")
|
||||
if rank != 0:
|
||||
print = lambda *_, **__: None
|
||||
torch.cuda.set_device(local_rank)
|
||||
torch.set_default_dtype(torch.bfloat16)
|
||||
torch.set_num_threads(8)
|
||||
torch.manual_seed(965)
|
||||
with open(config) as f:
|
||||
args = ModelArgs(**json.load(f))
|
||||
print(args)
|
||||
with torch.device("cuda"):
|
||||
model = Transformer(args)
|
||||
tokenizer = AutoTokenizer.from_pretrained(ckpt_path)
|
||||
tokenizer.decode(generate(model, [tokenizer.encode("DeepSeek")], 2, -1, 1.)[0])
|
||||
model_args = ModelArgs(**json.load(f))
|
||||
model = Transformer(model_args).to(torch.bfloat16).cuda()
|
||||
load_model(model, os.path.join(ckpt_path, f"model{rank}-mp{world_size}.safetensors"))
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained(ckpt_path)
|
||||
if interactive:
|
||||
messages = []
|
||||
while True:
|
||||
if world_size == 1:
|
||||
prompt = input(">>> ")
|
||||
elif rank == 0:
|
||||
prompt = input(">>> ")
|
||||
objects = [prompt]
|
||||
dist.broadcast_object_list(objects, 0)
|
||||
else:
|
||||
objects = [None]
|
||||
dist.broadcast_object_list(objects, 0)
|
||||
prompt = objects[0]
|
||||
prompt = get_input(rank, world_size)
|
||||
if prompt == "/exit":
|
||||
break
|
||||
elif prompt == "/clear":
|
||||
if prompt == "/clear":
|
||||
messages.clear()
|
||||
continue
|
||||
messages.append({"role": "user", "content": prompt})
|
||||
prompt_tokens = tokenizer.apply_chat_template(messages, add_generation_prompt=True)
|
||||
completion_tokens = generate(model, [prompt_tokens], max_new_tokens, tokenizer.eos_token_id, temperature)
|
||||
try:
|
||||
prompt_tokens = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True)
|
||||
except Exception as e:
|
||||
print(f"Tokenization error: {e}")
|
||||
continue
|
||||
completion_tokens = generate(model, [prompt_tokens], max_new_tokens, tokenizer.eos_token_id, temperature, top_k, top_p)
|
||||
completion = tokenizer.decode(completion_tokens[0], skip_special_tokens=True)
|
||||
print(completion)
|
||||
messages.append({"role": "assistant", "content": completion})
|
||||
else:
|
||||
with open(input_file) as f:
|
||||
prompts = [line.strip() for line in f.readlines()]
|
||||
assert len(prompts) <= args.max_batch_size, f"Number of prompts exceeds maximum batch size ({args.max_batch_size})"
|
||||
prompt_tokens = [tokenizer.apply_chat_template([{"role": "user", "content": prompt}], add_generation_prompt=True) for prompt in prompts]
|
||||
completion_tokens = generate(model, prompt_tokens, max_new_tokens, tokenizer.eos_token_id, temperature)
|
||||
completions = tokenizer.batch_decode(completion_tokens, skip_special_tokens=True)
|
||||
prompts = [line.strip() for line in f if line.strip()]
|
||||
batch_size = model_args.max_batch_size
|
||||
completions = []
|
||||
for i in range(0, len(prompts), batch_size):
|
||||
batch_prompts = prompts[i:i+batch_size]
|
||||
batch_tokens = [tokenizer.apply_chat_template([{"role": "user", "content": p}], add_generation_prompt=True) for p in batch_prompts]
|
||||
completion_tokens = generate(model, batch_tokens, max_new_tokens, tokenizer.eos_token_id, temperature, top_k, top_p)
|
||||
completions.extend(tokenizer.batch_decode(completion_tokens, skip_special_tokens=True))
|
||||
for prompt, completion in zip(prompts, completions):
|
||||
print("Prompt:", prompt)
|
||||
print("Completion:", completion)
|
||||
print()
|
||||
|
||||
print(f"Prompt: {prompt}\nCompletion: {completion}\n{'-'*50}")
|
||||
if world_size > 1:
|
||||
dist.destroy_process_group()
|
||||
|
||||
def get_input(rank: int, world_size: int) -> str:
|
||||
if world_size == 1 or rank == 0:
|
||||
prompt = input(">>> ")
|
||||
if world_size > 1:
|
||||
dist.broadcast_object_list([prompt], src=0)
|
||||
return prompt
|
||||
else:
|
||||
res = [None]
|
||||
dist.broadcast_object_list(res, src=0)
|
||||
return res[0]
|
||||
|
||||
if __name__ == "__main__":
|
||||
"""
|
||||
Command-line interface for distributed text generation.
|
||||
|
||||
Arguments:
|
||||
--ckpt-path (str): Path to the model checkpoint directory.
|
||||
--config (str): Path to the model configuration file.
|
||||
--input-file (str, optional): File containing prompts for batch processing.
|
||||
--interactive (bool, optional): Enable interactive mode for generating text.
|
||||
--max-new-tokens (int, optional): Maximum number of new tokens to generate. Defaults to 200.
|
||||
--temperature (float, optional): Temperature for sampling. Defaults to 0.2.
|
||||
|
||||
Raises:
|
||||
AssertionError: If neither input-file nor interactive mode is specified.
|
||||
"""
|
||||
parser = ArgumentParser()
|
||||
parser.add_argument("--ckpt-path", type=str, required=True)
|
||||
parser.add_argument("--config", type=str, required=True)
|
||||
@ -180,6 +124,8 @@ if __name__ == "__main__":
|
||||
parser.add_argument("--interactive", action="store_true")
|
||||
parser.add_argument("--max-new-tokens", type=int, default=200)
|
||||
parser.add_argument("--temperature", type=float, default=0.2)
|
||||
parser.add_argument("--top-k", type=int, default=None)
|
||||
parser.add_argument("--top-p", type=float, default=None)
|
||||
args = parser.parse_args()
|
||||
assert args.input_file or args.interactive, "Either input-file or interactive mode must be specified"
|
||||
main(args.ckpt_path, args.config, args.input_file, args.interactive, args.max_new_tokens, args.temperature)
|
||||
main(args.ckpt_path, args.config, args.input_file, args.interactive, args.max_new_tokens, args.temperature, args.top_k, args.top_p)
|
||||
|
Loading…
Reference in New Issue
Block a user