mirror of
https://github.com/deepseek-ai/DeepSeek-V3.git
synced 2025-07-04 23:41:37 -04:00
docs: Update benchmarks
This commit is contained in:
parent
973933d974
commit
c24c4dc1eb
@ -33,7 +33,7 @@ A **DRAFT proposal & foundation** for implementing DeepSeek V3 in Zig to create
|
||||
- ✅ **Improved matrix operations** (1000+ GFLOPS performance on an M1 Macbook)
|
||||
- ⚠️ **NOT PRODUCTION READY** - Draft implementation for research/development
|
||||
|
||||
**Performance Update**: ~~Current naive algorithms are ~1000x slower than optimized BLAS~~ **BLAS integration now functional.** Matrix multiplication: **2.1ms for 1024×1024** at **1000+ GFLOPS** on an M1 Macbook. This represents significant improvement over our initial naive implementation. See [experimental benchmarks](experimental/README.md#benchmarks) for detailed performance data.
|
||||
**Performance Update**: ~~Current naive algorithms are ~1000x slower than optimized BLAS~~ **BLAS integration now functional.** Matrix multiplication: **2.1ms for 1024×1024** at **1164 GFLOPS**, with peak **1084 GFLOPS at 512×512** on an M1 MacBook Pro under heavy load. This represents a ~**3000x speedup** over our initial naive implementation. See [experimental benchmarks](experimental/README.md#benchmarks) for detailed performance data.
|
||||
|
||||
## Why This Matters
|
||||
|
||||
@ -53,9 +53,10 @@ Current LLM inference is dominated by Python/PyTorch, which introduces:
|
||||
| Memory usage | 20-40GB | **< 16GB** | *16GB+ for basic ops* |
|
||||
| Dependencies | ~2GB runtime | **Single binary** | ✅ **Single binary** |
|
||||
| Deployment | Complex | **Copy & run** | ✅ **Copy & run** |
|
||||
| Matrix Mul (1024×1024) | ~1ms (optimized) | **< 1ms** | ✅ **2.1ms (1000+ GFLOPS/M1 Macbook)** |
|
||||
| Matrix Mul (1024×1024) | ~1ms (optimized) | **< 1ms** | ✅ **2.1ms (1164 GFLOPS)** |
|
||||
| Peak Performance | ~1500 GFLOPS | **> 1000 GFLOPS** | ✅ **1164 GFLOPS** |
|
||||
|
||||
*See [experimental benchmarks](experimental/README.md#benchmarks) for current performance measurements.*
|
||||
*Benchmarked on Apple M1 MacBook Pro under heavy load*
|
||||
|
||||
## Why Zig?
|
||||
|
||||
|
@ -243,21 +243,49 @@ Example output:
|
||||
🚀 DeepZig V3 Performance Benchmarks
|
||||
==========================================
|
||||
|
||||
Backend: CPU (BLAS accelerated)
|
||||
Architecture: aarch64
|
||||
Thread count: 8
|
||||
Hardware: Apple M1 MacBook Pro, 16GB unified memory
|
||||
🎯 DYNAMIC BENCHMARK SUMMARY
|
||||
===============================
|
||||
|
||||
Operation | Iterations | Avg Time | Operations/s | Memory
|
||||
-------------------------------|------------|-----------|--------------|-------
|
||||
Tensor Creation (1024x1024) | 1000 iter | 2.03 ms | 493 ops/s | 4.0 MB
|
||||
Tensor Addition (SIMD) | 100 iter | 1.49 ms | 2806962690 ops/s | 48.0 MB
|
||||
Matrix Multiplication (BLAS) | 10 iter | 2.1 ms | 1164 GFLOPS | 12.0 MB
|
||||
SwiGLU Activation | 1000 iter | 4.44 ms | 236002478 ops/s | 12.0 MB
|
||||
RMS Normalization (SIMD) | 1000 iter | 0.00 ms | 1077586 ops/s | 0.0 MB
|
||||
Memory Bandwidth | 100 iter | 4.92 ms | 13 ops/s | 128.0 MB
|
||||
📊 Matrix Multiplication Performance:
|
||||
• 256×256: 0.0 ms, 937 GFLOPS
|
||||
• 512×512: 0.2 ms, 1084 GFLOPS
|
||||
• 1024×1024: 2.1 ms, 1164 GFLOPS
|
||||
• 2048×2048: 20.9 ms, 823 GFLOPS
|
||||
🏆 Peak measured: 1164 GFLOPS at 1024×1024
|
||||
|
||||
🧮 BLAS Configuration:
|
||||
• Backend: Apple Accelerate
|
||||
• Theoretical peak: 2600 GFLOPS (estimated)
|
||||
|
||||
➕ Tensor Operations:
|
||||
• SIMD Addition: 3.5 GB/s
|
||||
|
||||
💾 Memory Performance:
|
||||
• Copy Bandwidth: 20.9 GB/s
|
||||
• Random Access Latency: 1.8 ns
|
||||
|
||||
🎯 Performance Assessment:
|
||||
✅ Acceptable: BLAS delivering 1000+ GFLOPS
|
||||
• Est. efficiency: 44% (vs theoretical peak)
|
||||
|
||||
Note: Benchmarked on Apple M1 MacBook Pro under heavy load
|
||||
(should be significantly higher on a clean system).
|
||||
```
|
||||
|
||||
**Performance Results** (Apple M1 MacBook Pro under heavy load):
|
||||
- **Matrix 256×256**: 0.0ms/iter, **937 GFLOPS**
|
||||
- **Matrix 512×512**: 0.2ms/iter, **1084 GFLOPS** (peak performance)
|
||||
- **Matrix 1024×1024**: 2.1ms/iter, **1164 GFLOPS**
|
||||
- **Matrix 2048×2048**: 20.9ms/iter, **823 GFLOPS**
|
||||
|
||||
**Performance Achievement**: From **6418ms naive** → **2.2ms BLAS** = **2900x speedup** on matrix operations
|
||||
|
||||
**System Status**:
|
||||
- ✅ **BLAS Backend**: Apple Accelerate integration delivering acceptable performance
|
||||
- ✅ **Peak Performance**: **1164 GFLOPS measured** (44% of theoretical maximum, impressive under load)
|
||||
- ✅ **Memory Bandwidth**: 20.9 GB/s copying, well-optimized operations
|
||||
- ✅ **Hardware Detection**: M-series Apple Silicon detection functional
|
||||
|
||||
## Known Issues
|
||||
|
||||
- **Model Loading**: Currently creates dummy models - real weight loading not implemented
|
||||
@ -303,18 +331,18 @@ This experimental implementation follows the same license as the original DeepSe
|
||||
|
||||
**Current Status**: ✅ **BLAS integration working** - Apple Accelerate backend now functional in draft implementation.
|
||||
|
||||
**Performance Results** (Apple M1, Accelerate backend):
|
||||
- **Matrix 256×256**: 0.1ms/iter, **561 GFLOPS** (21.6% efficiency)
|
||||
- **Matrix 512×512**: 0.2ms/iter, **1129 GFLOPS** (43.4% efficiency)
|
||||
- **Matrix 1024×1024**: 2.1ms/iter, **1004 GFLOPS** (38.6% efficiency)
|
||||
- **Matrix 2048×2048**: 21.5ms/iter, **799 GFLOPS** (30.7% efficiency)
|
||||
**Performance Results** (Apple M1 MacBook Pro under heavy load):
|
||||
- **Matrix 256×256**: 0.0ms/iter, **937 GFLOPS**
|
||||
- **Matrix 512×512**: 0.2ms/iter, **1084 GFLOPS**
|
||||
- **Matrix 1024×1024**: 2.1ms/iter, **1164 GFLOPS** (peak performance)
|
||||
- **Matrix 2048×2048**: 20.9ms/iter, **823 GFLOPS**
|
||||
|
||||
**Performance Improvement**: From **6418ms naive** → **2.1ms BLAS** = significant speedup for matrix operations. Measured on an M1 Macbook.
|
||||
**Performance Achievement**: From **6418ms naive** → **2.1ms BLAS** = ~**3000x speedup** on matrix operations.
|
||||
|
||||
**System Status**:
|
||||
- ✅ **BLAS Backend**: Apple Accelerate integration working
|
||||
- ✅ **Efficiency**: 20-44% of theoretical maximum (good for draft implementation)
|
||||
- ✅ **Memory Bandwidth**: 23.5 GB/s copying, basic optimization
|
||||
- ✅ **Peak Performance**: **1164 GFLOPS measured** (44% of theoretical maximum)
|
||||
- ✅ **Memory Bandwidth**: 20.9 GB/s copying, well-optimized operations
|
||||
- ✅ **Hardware Detection**: M-series Apple Silicon detection functional
|
||||
|
||||
**Next Steps**: Focus on transformer architecture, attention mechanisms, and model-specific optimizations for the draft DeepSeek V3 implementation.
|
Loading…
Reference in New Issue
Block a user