mirror of
https://github.com/deepseek-ai/DeepSeek-V3.git
synced 2025-06-12 04:36:44 -04:00
Merge d9b2e677b1
into 4cc6253d5c
This commit is contained in:
commit
b96bc590d9
419
README.md
419
README.md
@ -1,361 +1,236 @@
|
||||
<!-- markdownlint-disable first-line-h1 -->
|
||||
<!-- markdownlint-disable html -->
|
||||
<!-- markdownlint-disable no-duplicate-header -->
|
||||
# DeepSeek-V3
|
||||
|
||||
<div align="center">
|
||||
<img src="https://github.com/deepseek-ai/DeepSeek-V2/blob/main/figures/logo.svg?raw=true" width="60%" alt="DeepSeek-V3" />
|
||||
<img src="https://github.com/deepseek-ai/DeepSeek-V2/blob/main/figures/logo.svg?raw=true" width="60%" alt="DeepSeek-V3 Logo" />
|
||||
</div>
|
||||
<hr>
|
||||
<div align="center" style="line-height: 1;">
|
||||
<a href="https://www.deepseek.com/"><img alt="Homepage"
|
||||
src="https://github.com/deepseek-ai/DeepSeek-V2/blob/main/figures/badge.svg?raw=true"/></a>
|
||||
<a href="https://chat.deepseek.com/"><img alt="Chat"
|
||||
src="https://img.shields.io/badge/🤖%20Chat-DeepSeek%20V3-536af5?color=536af5&logoColor=white"/></a>
|
||||
<a href="https://huggingface.co/deepseek-ai"><img alt="Hugging Face"
|
||||
src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-DeepSeek%20AI-ffc107?color=ffc107&logoColor=white"/></a>
|
||||
|
||||
---
|
||||
|
||||
<div align="center" style="line-height: 1.5;">
|
||||
<a href="https://www.deepseek.com/"><img alt="Homepage" src="https://github.com/deepseek-ai/DeepSeek-V2/blob/main/figures/badge.svg?raw=true"/></a>
|
||||
<a href="https://chat.deepseek.com/"><img alt="Chat" src="https://img.shields.io/badge/🤖%20Chat-DeepSeek%20V3-536af5?color=536af5&logoColor=white"/></a>
|
||||
<a href="https://huggingface.co/deepseek-ai"><img alt="Hugging Face" src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-DeepSeek%20AI-ffc107?color=ffc107&slogoColor=white"/></a>
|
||||
<br>
|
||||
<a href="https://discord.gg/Tc7c45Zzu5"><img alt="Discord"
|
||||
src="https://img.shields.io/badge/Discord-DeepSeek%20AI-7289da?logo=discord&logoColor=white&color=7289da"/></a>
|
||||
<a href="https://github.com/deepseek-ai/DeepSeek-V2/blob/main/figures/qr.jpeg?raw=true"><img alt="Wechat"
|
||||
src="https://img.shields.io/badge/WeChat-DeepSeek%20AI-brightgreen?logo=wechat&logoColor=white"/></a>
|
||||
<a href="https://twitter.com/deepseek_ai"><img alt="Twitter Follow"
|
||||
src="https://img.shields.io/badge/Twitter-deepseek_ai-white?logo=x&logoColor=white"/></a>
|
||||
<a href="https://discord.gg/Tc7c45Zzu5"><img alt="Discord" src="https://img.shields.io/badge/Discord-DeepSeek%20AI-7289da?logo=discord&logoColor=white&color=7289da"/></a>
|
||||
<a href="https://github.com/deepseek-ai/DeepSeek-V2/blob/main/figures/qr.jpeg?raw=true"><img alt="WeChat" src="https://img.shields.io/badge/WeChat-DeepSeek%20AI-brightgreen?logo=wechat&logoColor=white"/></a>
|
||||
<a href="https://twitter.com/deepseek_ai"><img alt="Twitter Follow" src="https://img.shields.io/badge/Twitter-deepseek_ai-white?logo=x&logoColor=white"/></a>
|
||||
<br>
|
||||
<a href="https://github.com/deepseek-ai/DeepSeek-V3/blob/main/LICENSE-CODE"><img alt="Code License"
|
||||
src="https://img.shields.io/badge/Code_License-MIT-f5de53?&color=f5de53"/></a>
|
||||
<a href="https://github.com/deepseek-ai/DeepSeek-V3/blob/main/LICENSE-MODEL"><img alt="Model License"
|
||||
src="https://img.shields.io/badge/Model_License-Model_Agreement-f5de53?&color=f5de53"/></a>
|
||||
<a href="https://github.com/deepseek-ai/DeepSeek-V3/blob/main/LICENSE-CODE"><img alt="Code License" src="https://img.shields.io/badge/Code_License-MIT-f5de53?&color=f5de53"/></a>
|
||||
<a href="https://github.com/deepseek-ai/DeepSeek-V3/blob/main/LICENSE-MODEL"><img alt="Model License" src="https://img.shields.io/badge/Model_License-Model_Agreement-f5de53?&color=f5de53"/></a>
|
||||
<br>
|
||||
<a href="https://arxiv.org/pdf/2412.19437"><b>Paper Link</b>👁️</a>
|
||||
<a href="https://arxiv.org/pdf/2412.19437"><b>📄 Read the Paper</b></a>
|
||||
</div>
|
||||
|
||||
## Table of Contents
|
||||
|
||||
1. [Introduction](#1-introduction)
|
||||
2. [Model Summary](#2-model-summary)
|
||||
2. [Model Overview](#2-model-overview)
|
||||
3. [Model Downloads](#3-model-downloads)
|
||||
4. [Evaluation Results](#4-evaluation-results)
|
||||
5. [Chat Website & API Platform](#5-chat-website--api-platform)
|
||||
6. [How to Run Locally](#6-how-to-run-locally)
|
||||
7. [License](#7-license)
|
||||
4. [Performance Benchmarks](#4-performance-benchmarks)
|
||||
5. [Chat & API Access](#5-chat--api-access)
|
||||
6. [Running Locally](#6-running-locally)
|
||||
7. [Licensing](#7-licensing)
|
||||
8. [Citation](#8-citation)
|
||||
9. [Contact](#9-contact)
|
||||
|
||||
9. [Contact Us](#9-contact-us)
|
||||
|
||||
## 1. Introduction
|
||||
|
||||
We present DeepSeek-V3, a strong Mixture-of-Experts (MoE) language model with 671B total parameters with 37B activated for each token.
|
||||
To achieve efficient inference and cost-effective training, DeepSeek-V3 adopts Multi-head Latent Attention (MLA) and DeepSeekMoE architectures, which were thoroughly validated in DeepSeek-V2.
|
||||
Furthermore, DeepSeek-V3 pioneers an auxiliary-loss-free strategy for load balancing and sets a multi-token prediction training objective for stronger performance.
|
||||
We pre-train DeepSeek-V3 on 14.8 trillion diverse and high-quality tokens, followed by Supervised Fine-Tuning and Reinforcement Learning stages to fully harness its capabilities.
|
||||
Comprehensive evaluations reveal that DeepSeek-V3 outperforms other open-source models and achieves performance comparable to leading closed-source models.
|
||||
Despite its excellent performance, DeepSeek-V3 requires only 2.788M H800 GPU hours for its full training.
|
||||
In addition, its training process is remarkably stable.
|
||||
Throughout the entire training process, we did not experience any irrecoverable loss spikes or perform any rollbacks.
|
||||
<p align="center">
|
||||
<img width="80%" src="figures/benchmark.png">
|
||||
</p>
|
||||
**DeepSeek-V3** is a state-of-the-art Mixture-of-Experts (MoE) language model with **671 billion total parameters**, activating **37 billion parameters per token**. Building on the efficient architecture of DeepSeek-V2, it introduces cutting-edge innovations, including **Multi-head Latent Attention (MLA)**, **DeepSeekMoE**, an **auxiliary-loss-free load balancing strategy**, and a **Multi-Token Prediction (MTP)** training objective. These advancements deliver exceptional performance and scalability.
|
||||
|
||||
## 2. Model Summary
|
||||
Pre-trained on **14.8 trillion high-quality, diverse tokens**, followed by Supervised Fine-Tuning (SFT) and Reinforcement Learning (RL), DeepSeek-V3 achieves **top-tier performance**, surpassing other open-source models and rivaling leading closed-source models. Remarkably, its full training required only **2.788 million H800 GPU hours**, with a stable process free of loss spikes or rollbacks.
|
||||
|
||||
---
|
||||
<div align="center">
|
||||
<img width="80%" src="figures/benchmark.png" alt="DeepSeek-V3 Benchmark Results" />
|
||||
<p><em>Benchmark performance showcasing DeepSeek-V3’s capabilities.</em></p>
|
||||
</div>
|
||||
|
||||
**Architecture: Innovative Load Balancing Strategy and Training Objective**
|
||||
## 2. Model Overview
|
||||
|
||||
- On top of the efficient architecture of DeepSeek-V2, we pioneer an auxiliary-loss-free strategy for load balancing, which minimizes the performance degradation that arises from encouraging load balancing.
|
||||
- We investigate a Multi-Token Prediction (MTP) objective and prove it beneficial to model performance.
|
||||
It can also be used for speculative decoding for inference acceleration.
|
||||
### Architecture: Optimized for Efficiency
|
||||
- **Innovative Load Balancing**: An auxiliary-loss-free strategy minimizes performance degradation while optimizing resource allocation.
|
||||
- **Multi-Token Prediction (MTP)**: Enhances model performance and supports speculative decoding for faster inference.
|
||||
- **DeepSeekMoE & MLA**: Leverages the proven efficiency of DeepSeek-V2’s architecture for large-scale MoE models.
|
||||
|
||||
---
|
||||
### Pre-Training: Unprecedented Efficiency
|
||||
- **FP8 Mixed Precision**: Validates FP8 training for large-scale models, reducing memory and computational overhead.
|
||||
- **Optimized Communication**: Overcomes cross-node MoE training bottlenecks, achieving near-complete computation-communication overlap.
|
||||
- **Cost-Effective Scaling**: Pre-trained on 14.8T tokens using only **2.664M H800 GPU hours**, with post-training requiring just **0.1M GPU hours**.
|
||||
|
||||
**Pre-Training: Towards Ultimate Training Efficiency**
|
||||
### Post-Training: Advanced Reasoning
|
||||
- **Knowledge Distillation**: Integrates reasoning capabilities from DeepSeek-R1’s long-Chain-of-Thought (CoT) model, enhancing DeepSeek-V3’s reasoning while maintaining control over output style and length.
|
||||
|
||||
- We design an FP8 mixed precision training framework and, for the first time, validate the feasibility and effectiveness of FP8 training on an extremely large-scale model.
|
||||
- Through co-design of algorithms, frameworks, and hardware, we overcome the communication bottleneck in cross-node MoE training, nearly achieving full computation-communication overlap.
|
||||
This significantly enhances our training efficiency and reduces the training costs, enabling us to further scale up the model size without additional overhead.
|
||||
- At an economical cost of only 2.664M H800 GPU hours, we complete the pre-training of DeepSeek-V3 on 14.8T tokens, producing the currently strongest open-source base model. The subsequent training stages after pre-training require only 0.1M GPU hours.
|
||||
## 3. 🚀 Model Downloads
|
||||
|
||||
---
|
||||
|
||||
**Post-Training: Knowledge Distillation from DeepSeek-R1**
|
||||
|
||||
- We introduce an innovative methodology to distill reasoning capabilities from the long-Chain-of-Thought (CoT) model, specifically from one of the DeepSeek R1 series models, into standard LLMs, particularly DeepSeek-V3. Our pipeline elegantly incorporates the verification and reflection patterns of R1 into DeepSeek-V3 and notably improves its reasoning performance. Meanwhile, we also maintain a control over the output style and length of DeepSeek-V3.
|
||||
|
||||
---
|
||||
|
||||
|
||||
## 3. Model Downloads
|
||||
Access DeepSeek-V3 models, pre-trained and fine-tuned for exceptional performance:
|
||||
|
||||
<div align="center">
|
||||
|
||||
| **Model** | **#Total Params** | **#Activated Params** | **Context Length** | **Download** |
|
||||
| :------------: | :------------: | :------------: | :------------: | :------------: |
|
||||
| DeepSeek-V3-Base | 671B | 37B | 128K | [🤗 Hugging Face](https://huggingface.co/deepseek-ai/DeepSeek-V3-Base) |
|
||||
| DeepSeek-V3 | 671B | 37B | 128K | [🤗 Hugging Face](https://huggingface.co/deepseek-ai/DeepSeek-V3) |
|
||||
| Model Name | Total Parameters | Activated Parameters | Context Length | Download |
|
||||
|------------|------------------|----------------------|----------------|----------|
|
||||
| DeepSeek-V3-Base | 671B | 37B | 128K | [🤗 Hugging Face](https://huggingface.co/deepseek-ai/DeepSeek-V3-Base) |
|
||||
| DeepSeek-V3 | 671B | 37B | 128K | [🤗 Hugging Face](https://huggingface.co/deepseek-ai/DeepSeek-V3) |
|
||||
|
||||
</div>
|
||||
|
||||
> [!NOTE]
|
||||
> The total size of DeepSeek-V3 models on Hugging Face is 685B, which includes 671B of the Main Model weights and 14B of the Multi-Token Prediction (MTP) Module weights.
|
||||
> **Note**: The total model size is **685B**, including **671B main model weights** and **14B Multi-Token Prediction (MTP) module weights**.
|
||||
|
||||
To ensure optimal performance and flexibility, we have partnered with open-source communities and hardware vendors to provide multiple ways to run the model locally. For step-by-step guidance, check out Section 6: [How_to Run_Locally](#6-how-to-run-locally).
|
||||
For detailed instructions on running the model locally, see [Section 6: Running Locally](#6-running-locally). Developers can explore [README_WEIGHTS.md](./README_WEIGHTS.md) for insights into model weights and MTP modules. Community contributions to MTP support are welcome!
|
||||
|
||||
For developers looking to dive deeper, we recommend exploring [README_WEIGHTS.md](./README_WEIGHTS.md) for details on the Main Model weights and the Multi-Token Prediction (MTP) Modules. Please note that MTP support is currently under active development within the community, and we welcome your contributions and feedback.
|
||||
## 4. Performance Benchmarks
|
||||
|
||||
## 4. Evaluation Results
|
||||
### Base Model
|
||||
#### Standard Benchmarks
|
||||
### Base Model: Standard Benchmarks
|
||||
|
||||
DeepSeek-V3 excels across a wide range of tasks, particularly in **math** and **code**:
|
||||
|
||||
<div align="center">
|
||||
|
||||
|
||||
| | Benchmark (Metric) | # Shots | DeepSeek-V2 | Qwen2.5 72B | LLaMA3.1 405B | DeepSeek-V3 |
|
||||
|---|-------------------|----------|--------|-------------|---------------|---------|
|
||||
| | Architecture | - | MoE | Dense | Dense | MoE |
|
||||
| | # Activated Params | - | 21B | 72B | 405B | 37B |
|
||||
| | # Total Params | - | 236B | 72B | 405B | 671B |
|
||||
| English | Pile-test (BPB) | - | 0.606 | 0.638 | **0.542** | 0.548 |
|
||||
| Category | Benchmark (Metric) | # Shots | DeepSeek-V2 | Qwen2.5 72B | LLaMA3.1 405B | DeepSeek-V3 |
|
||||
|----------|-------------------|---------|-------------|-------------|---------------|-------------|
|
||||
| **Architecture** | - | - | MoE | Dense | Dense | **MoE** |
|
||||
| **Activated Params** | - | - | 21B | 72B | 405B | **37B** |
|
||||
| **Total Params** | - | - | 236B | 72B | 405B | **671B** |
|
||||
| **English** | Pile-test (BPB) | - | 0.606 | 0.638 | **0.542** | 0.548 |
|
||||
| | BBH (EM) | 3-shot | 78.8 | 79.8 | 82.9 | **87.5** |
|
||||
| | MMLU (Acc.) | 5-shot | 78.4 | 85.0 | 84.4 | **87.1** |
|
||||
| | MMLU-Redux (Acc.) | 5-shot | 75.6 | 83.2 | 81.3 | **86.2** |
|
||||
| | MMLU-Pro (Acc.) | 5-shot | 51.4 | 58.3 | 52.8 | **64.4** |
|
||||
| | DROP (F1) | 3-shot | 80.4 | 80.6 | 86.0 | **89.0** |
|
||||
| | ARC-Easy (Acc.) | 25-shot | 97.6 | 98.4 | 98.4 | **98.9** |
|
||||
| | ARC-Challenge (Acc.) | 25-shot | 92.2 | 94.5 | **95.3** | **95.3** |
|
||||
| | HellaSwag (Acc.) | 10-shot | 87.1 | 84.8 | **89.2** | 88.9 |
|
||||
| | PIQA (Acc.) | 0-shot | 83.9 | 82.6 | **85.9** | 84.7 |
|
||||
| | WinoGrande (Acc.) | 5-shot | **86.3** | 82.3 | 85.2 | 84.9 |
|
||||
| | RACE-Middle (Acc.) | 5-shot | 73.1 | 68.1 | **74.2** | 67.1 |
|
||||
| | RACE-High (Acc.) | 5-shot | 52.6 | 50.3 | **56.8** | 51.3 |
|
||||
| | TriviaQA (EM) | 5-shot | 80.0 | 71.9 | 82.7 | **82.9** |
|
||||
| | NaturalQuestions (EM) | 5-shot | 38.6 | 33.2 | **41.5** | 40.0 |
|
||||
| | AGIEval (Acc.) | 0-shot | 57.5 | 75.8 | 60.6 | **79.6** |
|
||||
| Code | HumanEval (Pass@1) | 0-shot | 43.3 | 53.0 | 54.9 | **65.2** |
|
||||
| **Code** | HumanEval (Pass@1) | 0-shot | 43.3 | 53.0 | 54.9 | **65.2** |
|
||||
| | MBPP (Pass@1) | 3-shot | 65.0 | 72.6 | 68.4 | **75.4** |
|
||||
| | LiveCodeBench-Base (Pass@1) | 3-shot | 11.6 | 12.9 | 15.5 | **19.4** |
|
||||
| | CRUXEval-I (Acc.) | 2-shot | 52.5 | 59.1 | 58.5 | **67.3** |
|
||||
| | CRUXEval-O (Acc.) | 2-shot | 49.8 | 59.9 | 59.9 | **69.8** |
|
||||
| Math | GSM8K (EM) | 8-shot | 81.6 | 88.3 | 83.5 | **89.3** |
|
||||
| **Math** | GSM8K (EM) | 8-shot | 81.6 | 88.3 | 83.5 | **89.3** |
|
||||
| | MATH (EM) | 4-shot | 43.4 | 54.4 | 49.0 | **61.6** |
|
||||
| | MGSM (EM) | 8-shot | 63.6 | 76.2 | 69.9 | **79.8** |
|
||||
| | CMath (EM) | 3-shot | 78.7 | 84.5 | 77.3 | **90.7** |
|
||||
| Chinese | CLUEWSC (EM) | 5-shot | 82.0 | 82.5 | **83.0** | 82.7 |
|
||||
| | C-Eval (Acc.) | 5-shot | 81.4 | 89.2 | 72.5 | **90.1** |
|
||||
| **Chinese** | C-Eval (Acc.) | 5-shot | 81.4 | 89.2 | 72.5 | **90.1** |
|
||||
| | CMMLU (Acc.) | 5-shot | 84.0 | **89.5** | 73.7 | 88.8 |
|
||||
| | CMRC (EM) | 1-shot | **77.4** | 75.8 | 76.0 | 76.3 |
|
||||
| | C3 (Acc.) | 0-shot | 77.4 | 76.7 | **79.7** | 78.6 |
|
||||
| | CCPM (Acc.) | 0-shot | **93.0** | 88.5 | 78.6 | 92.0 |
|
||||
| Multilingual | MMMLU-non-English (Acc.) | 5-shot | 64.0 | 74.8 | 73.8 | **79.4** |
|
||||
| **Multilingual** | MMMLU-non-English (Acc.) | 5-shot | 64.0 | 74.8 | 73.8 | **79.4** |
|
||||
|
||||
</div>
|
||||
|
||||
> [!NOTE]
|
||||
> Best results are shown in bold. Scores with a gap not exceeding 0.3 are considered to be at the same level. DeepSeek-V3 achieves the best performance on most benchmarks, especially on math and code tasks.
|
||||
> For more evaluation details, please check our paper.
|
||||
> **Note**: Bold indicates the best results. Scores within 0.3 points are considered equivalent. For detailed results, refer to the [technical paper](https://arxiv.org/pdf/2412.19437).
|
||||
|
||||
#### Context Window
|
||||
<p align="center">
|
||||
<img width="80%" src="figures/niah.png">
|
||||
</p>
|
||||
### Context Window
|
||||
DeepSeek-V3 supports a **128K context window**, performing robustly in **Needle In A Haystack (NIAH)** tests across all lengths.
|
||||
|
||||
Evaluation results on the ``Needle In A Haystack`` (NIAH) tests. DeepSeek-V3 performs well across all context window lengths up to **128K**.
|
||||
<div align="center">
|
||||
<img width="80%" src="figures/niah.png" alt="DeepSeek-V3 Context Window Performance" />
|
||||
<p><em>DeepSeek-V3’s performance across context window lengths.</em></p>
|
||||
</div>
|
||||
|
||||
### Chat Model: Competitive with Frontier Models
|
||||
|
||||
DeepSeek-V3’s chat model rivals leading closed-source models:
|
||||
|
||||
### Chat Model
|
||||
#### Standard Benchmarks (Models larger than 67B)
|
||||
<div align="center">
|
||||
|
||||
| | **Benchmark (Metric)** | **DeepSeek V2-0506** | **DeepSeek V2.5-0905** | **Qwen2.5 72B-Inst.** | **Llama3.1 405B-Inst.** | **Claude-3.5-Sonnet-1022** | **GPT-4o 0513** | **DeepSeek V3** |
|
||||
|---|---------------------|---------------------|----------------------|---------------------|----------------------|---------------------------|----------------|----------------|
|
||||
| | Architecture | MoE | MoE | Dense | Dense | - | - | MoE |
|
||||
| | # Activated Params | 21B | 21B | 72B | 405B | - | - | 37B |
|
||||
| | # Total Params | 236B | 236B | 72B | 405B | - | - | 671B |
|
||||
| English | MMLU (EM) | 78.2 | 80.6 | 85.3 | **88.6** | **88.3** | 87.2 | **88.5** |
|
||||
| | MMLU-Redux (EM) | 77.9 | 80.3 | 85.6 | 86.2 | **88.9** | 88.0 | **89.1** |
|
||||
| | MMLU-Pro (EM) | 58.5 | 66.2 | 71.6 | 73.3 | **78.0** | 72.6 | 75.9 |
|
||||
| | DROP (3-shot F1) | 83.0 | 87.8 | 76.7 | 88.7 | 88.3 | 83.7 | **91.6** |
|
||||
| | IF-Eval (Prompt Strict) | 57.7 | 80.6 | 84.1 | 86.0 | **86.5** | 84.3 | 86.1 |
|
||||
| | GPQA-Diamond (Pass@1) | 35.3 | 41.3 | 49.0 | 51.1 | **65.0** | 49.9 | 59.1 |
|
||||
| | SimpleQA (Correct) | 9.0 | 10.2 | 9.1 | 17.1 | 28.4 | **38.2** | 24.9 |
|
||||
| | FRAMES (Acc.) | 66.9 | 65.4 | 69.8 | 70.0 | 72.5 | **80.5** | 73.3 |
|
||||
| | LongBench v2 (Acc.) | 31.6 | 35.4 | 39.4 | 36.1 | 41.0 | 48.1 | **48.7** |
|
||||
| Code | HumanEval-Mul (Pass@1) | 69.3 | 77.4 | 77.3 | 77.2 | 81.7 | 80.5 | **82.6** |
|
||||
| | LiveCodeBench (Pass@1-COT) | 18.8 | 29.2 | 31.1 | 28.4 | 36.3 | 33.4 | **40.5** |
|
||||
| | LiveCodeBench (Pass@1) | 20.3 | 28.4 | 28.7 | 30.1 | 32.8 | 34.2 | **37.6** |
|
||||
| | Codeforces (Percentile) | 17.5 | 35.6 | 24.8 | 25.3 | 20.3 | 23.6 | **51.6** |
|
||||
| | SWE Verified (Resolved) | - | 22.6 | 23.8 | 24.5 | **50.8** | 38.8 | 42.0 |
|
||||
| | Aider-Edit (Acc.) | 60.3 | 71.6 | 65.4 | 63.9 | **84.2** | 72.9 | 79.7 |
|
||||
| | Aider-Polyglot (Acc.) | - | 18.2 | 7.6 | 5.8 | 45.3 | 16.0 | **49.6** |
|
||||
| Math | AIME 2024 (Pass@1) | 4.6 | 16.7 | 23.3 | 23.3 | 16.0 | 9.3 | **39.2** |
|
||||
| | MATH-500 (EM) | 56.3 | 74.7 | 80.0 | 73.8 | 78.3 | 74.6 | **90.2** |
|
||||
| | CNMO 2024 (Pass@1) | 2.8 | 10.8 | 15.9 | 6.8 | 13.1 | 10.8 | **43.2** |
|
||||
| Chinese | CLUEWSC (EM) | 89.9 | 90.4 | **91.4** | 84.7 | 85.4 | 87.9 | 90.9 |
|
||||
| | C-Eval (EM) | 78.6 | 79.5 | 86.1 | 61.5 | 76.7 | 76.0 | **86.5** |
|
||||
| | C-SimpleQA (Correct) | 48.5 | 54.1 | 48.4 | 50.4 | 51.3 | 59.3 | **64.8** |
|
||||
| Benchmark (Metric) | DeepSeek-V2.5 | Qwen2.5 72B | LLaMA3.1 405B | Claude-3.5 | GPT-4o | DeepSeek-V3 |
|
||||
|--------------------|---------------|-------------|---------------|------------|--------|-------------|
|
||||
| MMLU (EM) | 80.6 | 85.3 | **88.6** | **88.3** | 87.2 | **88.5** |
|
||||
| MMLU-Pro (EM) | 66.2 | 71.6 | 73.3 | **78.0** | 72.6 | 75.9 |
|
||||
| DROP (3-shot F1) | 87.8 | 76.7 | 88.7 | 88.3 | 83.7 | **91.6** |
|
||||
| HumanEval-Mul (Pass@1) | 77.4 | 77.3 | 77.2 | 81.7 | 80.5 | **82.6** |
|
||||
| MATH-500 (EM) | 74.7 | 80.0 | 73.8 | 78.3 | 74.6 | **90.2** |
|
||||
| AIME 2024 (Pass@1) | 16.7 | 23.3 | 23.3 | 16.0 | 9.3 | **39.2** |
|
||||
|
||||
</div>
|
||||
|
||||
> [!NOTE]
|
||||
> All models are evaluated in a configuration that limits the output length to 8K. Benchmarks containing fewer than 1000 samples are tested multiple times using varying temperature settings to derive robust final results. DeepSeek-V3 stands as the best-performing open-source model, and also exhibits competitive performance against frontier closed-source models.
|
||||
### Open-Ended Generation
|
||||
|
||||
|
||||
#### Open Ended Generation Evaluation
|
||||
DeepSeek-V3 excels in conversational tasks, outperforming other open-source models:
|
||||
|
||||
<div align="center">
|
||||
|
||||
|
||||
|
||||
| Model | Arena-Hard | AlpacaEval 2.0 |
|
||||
|-------|------------|----------------|
|
||||
| DeepSeek-V2.5-0905 | 76.2 | 50.5 |
|
||||
| Qwen2.5-72B-Instruct | 81.2 | 49.1 |
|
||||
| LLaMA-3.1 405B | 69.3 | 40.5 |
|
||||
| GPT-4o-0513 | 80.4 | 51.1 |
|
||||
| Claude-Sonnet-3.5-1022 | 85.2 | 52.0 |
|
||||
| DeepSeek-V3 | **85.5** | **70.0** |
|
||||
| DeepSeek-V2.5 | 76.2 | 50.5 |
|
||||
| Qwen2.5-72B | 81.2 | 49.1 |
|
||||
| LLaMA3.1-405B | 69.3 | 40.5 |
|
||||
| GPT-4o | 80.4 | 51.1 |
|
||||
| Claude-Sonnet-3.5 | 85.2 | 52.0 |
|
||||
| **DeepSeek-V3** | **85.5** | **70.0** |
|
||||
|
||||
</div>
|
||||
|
||||
> [!NOTE]
|
||||
> English open-ended conversation evaluations. For AlpacaEval 2.0, we use the length-controlled win rate as the metric.
|
||||
> **Note**: AlpacaEval 2.0 uses length-controlled win rate.
|
||||
|
||||
## 5. Chat & API Access
|
||||
|
||||
## 5. Chat Website & API Platform
|
||||
You can chat with DeepSeek-V3 on DeepSeek's official website: [chat.deepseek.com](https://chat.deepseek.com/sign_in)
|
||||
- **Chat with DeepSeek-V3**: Try it on our official platform: [chat.deepseek.com](https://chat.deepseek.com/sign_in).
|
||||
- **API Access**: Integrate DeepSeek-V3 via our OpenAI-compatible API: [platform.deepseek.com](https://platform.deepseek.com/).
|
||||
|
||||
We also provide OpenAI-Compatible API at DeepSeek Platform: [platform.deepseek.com](https://platform.deepseek.com/)
|
||||
## 6. Running Locally
|
||||
|
||||
## 6. How to Run Locally
|
||||
DeepSeek-V3 can be deployed locally using a variety of frameworks and hardware configurations. Below are the supported options:
|
||||
|
||||
DeepSeek-V3 can be deployed locally using the following hardware and open-source community software:
|
||||
### Supported Frameworks
|
||||
1. **DeepSeek-Infer Demo**: Lightweight demo for FP8 and BF16 inference.
|
||||
2. **SGLang**: Supports FP8/BF16 with MLA optimizations and multi-node tensor parallelism. MTP support is in progress ([details](https://github.com/sgl-project/sglang/issues/2591)).
|
||||
3. **LMDeploy**: Efficient FP8/BF16 inference for local and cloud deployment ([instructions](https://github.com/InternLM/lmdeploy/issues/2960)).
|
||||
4. **TensorRT-LLM**: Supports BF16 and INT4/8 quantization; FP8 support coming soon ([custom branch](https://github.com/NVIDIA/TensorRT-LLM/tree/main/examples/deepseek_v3)).
|
||||
5. **vLLM**: Supports FP8/BF16 with pipeline parallelism ([instructions](https://docs.vllm.ai/en/latest/serving/distributed_serving.html)).
|
||||
6. **LightLLM**: Single- and multi-node deployment for FP8/BF16 ([instructions](https://lightllm-en.readthedocs.io/en/latest/getting_started/quickstart.html)).
|
||||
7. **AMD GPU**: Full FP8/BF16 support via SGLang.
|
||||
8. **Huawei Ascend NPU**: BF16 support via MindIE ([instructions](https://modelers.cn/models/MindIE/deepseekv3)).
|
||||
|
||||
1. **DeepSeek-Infer Demo**: We provide a simple and lightweight demo for FP8 and BF16 inference.
|
||||
2. **SGLang**: Fully support the DeepSeek-V3 model in both BF16 and FP8 inference modes, with Multi-Token Prediction [coming soon](https://github.com/sgl-project/sglang/issues/2591).
|
||||
3. **LMDeploy**: Enables efficient FP8 and BF16 inference for local and cloud deployment.
|
||||
4. **TensorRT-LLM**: Currently supports BF16 inference and INT4/8 quantization, with FP8 support coming soon.
|
||||
5. **vLLM**: Support DeepSeek-V3 model with FP8 and BF16 modes for tensor parallelism and pipeline parallelism.
|
||||
6. **LightLLM**: Supports efficient single-node or multi-node deployment for FP8 and BF16.
|
||||
7. **AMD GPU**: Enables running the DeepSeek-V3 model on AMD GPUs via SGLang in both BF16 and FP8 modes.
|
||||
8. **Huawei Ascend NPU**: Supports running DeepSeek-V3 on Huawei Ascend devices.
|
||||
|
||||
Since FP8 training is natively adopted in our framework, we only provide FP8 weights. If you require BF16 weights for experimentation, you can use the provided conversion script to perform the transformation.
|
||||
|
||||
Here is an example of converting FP8 weights to BF16:
|
||||
### Converting FP8 to BF16
|
||||
DeepSeek-V3 uses FP8 weights by default. To convert to BF16:
|
||||
|
||||
```shell
|
||||
cd inference
|
||||
python fp8_cast_bf16.py --input-fp8-hf-path /path/to/fp8_weights --output-bf16-hf-path /path/to/bf16_weights
|
||||
```
|
||||
|
||||
> [!NOTE]
|
||||
> Hugging Face's Transformers has not been directly supported yet.
|
||||
|
||||
### 6.1 Inference with DeepSeek-Infer Demo (example only)
|
||||
### Example: DeepSeek-Infer Demo
|
||||
|
||||
#### System Requirements
|
||||
- **OS**: Linux with Python 3.10 (Mac/Windows not supported).
|
||||
- **Dependencies**:
|
||||
```pip-requirements
|
||||
torch==2.4.1
|
||||
triton==3.0.0
|
||||
transformers==4.46.3
|
||||
safetensors==0.4.5
|
||||
```
|
||||
|
||||
> [!NOTE]
|
||||
> Linux with Python 3.10 only. Mac and Windows are not supported.
|
||||
#### Setup
|
||||
1. Clone the repository:
|
||||
```shell
|
||||
git clone https://github.com/deepseek-ai/DeepSeek-V3.git
|
||||
cd DeepSeek-V3/inference
|
||||
pip install -r requirements.txt
|
||||
```
|
||||
2. Download model weights from [Hugging Face](https://huggingface.co/deepseek-ai/DeepSeek-V3) and place them in `/path/to/DeepSeek-V3`.
|
||||
3. Convert weights:
|
||||
```shell
|
||||
python convert.py --hf-ckpt-path /path/to/DeepSeek-V3 --save-path /path/to/DeepSeek-V3-Demo --n-experts 256 --model-parallel 16
|
||||
```
|
||||
4. Run interactive chat:
|
||||
```shell
|
||||
torchrun --nnodes 2 --nproc-per-node 8 --node-rank $RANK --master-addr $ADDR generate.py --ckpt-path /path/to/DeepSeek-V3-Demo --config configs/config_671B.json --interactive --temperature 0.7 --max-new-tokens 200
|
||||
```
|
||||
|
||||
Dependencies:
|
||||
```pip-requirements
|
||||
torch==2.4.1
|
||||
triton==3.0.0
|
||||
transformers==4.46.3
|
||||
safetensors==0.4.5
|
||||
```
|
||||
#### Model Weights & Demo Code Preparation
|
||||
> **Note**: Hugging Face Transformers support is under development.
|
||||
|
||||
First, clone our DeepSeek-V3 GitHub repository:
|
||||
## 7. Licensing
|
||||
|
||||
```shell
|
||||
git clone https://github.com/deepseek-ai/DeepSeek-V3.git
|
||||
```
|
||||
|
||||
Navigate to the `inference` folder and install dependencies listed in `requirements.txt`. Easiest way is to use a package manager like `conda` or `uv` to create a new virtual environment and install the dependencies.
|
||||
|
||||
```shell
|
||||
cd DeepSeek-V3/inference
|
||||
pip install -r requirements.txt
|
||||
```
|
||||
|
||||
Download the model weights from Hugging Face, and put them into `/path/to/DeepSeek-V3` folder.
|
||||
|
||||
#### Model Weights Conversion
|
||||
|
||||
Convert Hugging Face model weights to a specific format:
|
||||
|
||||
```shell
|
||||
python convert.py --hf-ckpt-path /path/to/DeepSeek-V3 --save-path /path/to/DeepSeek-V3-Demo --n-experts 256 --model-parallel 16
|
||||
```
|
||||
|
||||
#### Run
|
||||
|
||||
Then you can chat with DeepSeek-V3:
|
||||
|
||||
```shell
|
||||
torchrun --nnodes 2 --nproc-per-node 8 --node-rank $RANK --master-addr $ADDR generate.py --ckpt-path /path/to/DeepSeek-V3-Demo --config configs/config_671B.json --interactive --temperature 0.7 --max-new-tokens 200
|
||||
```
|
||||
|
||||
Or batch inference on a given file:
|
||||
|
||||
```shell
|
||||
torchrun --nnodes 2 --nproc-per-node 8 --node-rank $RANK --master-addr $ADDR generate.py --ckpt-path /path/to/DeepSeek-V3-Demo --config configs/config_671B.json --input-file $FILE
|
||||
```
|
||||
|
||||
### 6.2 Inference with SGLang (recommended)
|
||||
|
||||
[SGLang](https://github.com/sgl-project/sglang) currently supports [MLA optimizations](https://lmsys.org/blog/2024-09-04-sglang-v0-3/#deepseek-multi-head-latent-attention-mla-throughput-optimizations), [DP Attention](https://lmsys.org/blog/2024-12-04-sglang-v0-4/#data-parallelism-attention-for-deepseek-models), FP8 (W8A8), FP8 KV Cache, and Torch Compile, delivering state-of-the-art latency and throughput performance among open-source frameworks.
|
||||
|
||||
Notably, [SGLang v0.4.1](https://github.com/sgl-project/sglang/releases/tag/v0.4.1) fully supports running DeepSeek-V3 on both **NVIDIA and AMD GPUs**, making it a highly versatile and robust solution.
|
||||
|
||||
SGLang also supports [multi-node tensor parallelism](https://github.com/sgl-project/sglang/tree/main/benchmark/deepseek_v3#example-serving-with-2-h208), enabling you to run this model on multiple network-connected machines.
|
||||
|
||||
Multi-Token Prediction (MTP) is in development, and progress can be tracked in the [optimization plan](https://github.com/sgl-project/sglang/issues/2591).
|
||||
|
||||
Here are the launch instructions from the SGLang team: https://github.com/sgl-project/sglang/tree/main/benchmark/deepseek_v3
|
||||
|
||||
### 6.3 Inference with LMDeploy (recommended)
|
||||
[LMDeploy](https://github.com/InternLM/lmdeploy), a flexible and high-performance inference and serving framework tailored for large language models, now supports DeepSeek-V3. It offers both offline pipeline processing and online deployment capabilities, seamlessly integrating with PyTorch-based workflows.
|
||||
|
||||
For comprehensive step-by-step instructions on running DeepSeek-V3 with LMDeploy, please refer to here: https://github.com/InternLM/lmdeploy/issues/2960
|
||||
|
||||
|
||||
### 6.4 Inference with TRT-LLM (recommended)
|
||||
|
||||
[TensorRT-LLM](https://github.com/NVIDIA/TensorRT-LLM) now supports the DeepSeek-V3 model, offering precision options such as BF16 and INT4/INT8 weight-only. Support for FP8 is currently in progress and will be released soon. You can access the custom branch of TRTLLM specifically for DeepSeek-V3 support through the following link to experience the new features directly: https://github.com/NVIDIA/TensorRT-LLM/tree/main/examples/deepseek_v3.
|
||||
|
||||
|
||||
### 6.5 Inference with vLLM (recommended)
|
||||
|
||||
[vLLM](https://github.com/vllm-project/vllm) v0.6.6 supports DeepSeek-V3 inference for FP8 and BF16 modes on both NVIDIA and AMD GPUs. Aside from standard techniques, vLLM offers _pipeline parallelism_ allowing you to run this model on multiple machines connected by networks. For detailed guidance, please refer to the [vLLM instructions](https://docs.vllm.ai/en/latest/serving/distributed_serving.html). Please feel free to follow [the enhancement plan](https://github.com/vllm-project/vllm/issues/11539) as well.
|
||||
|
||||
### 6.6 Inference with LightLLM (recommended)
|
||||
|
||||
[LightLLM](https://github.com/ModelTC/lightllm/tree/main) v1.0.1 supports single-machine and multi-machine tensor parallel deployment for DeepSeek-R1 (FP8/BF16) and provides mixed-precision deployment, with more quantization modes continuously integrated. For more details, please refer to [LightLLM instructions](https://lightllm-en.readthedocs.io/en/latest/getting_started/quickstart.html). Additionally, LightLLM offers PD-disaggregation deployment for DeepSeek-V2, and the implementation of PD-disaggregation for DeepSeek-V3 is in development.
|
||||
|
||||
### 6.7 Recommended Inference Functionality with AMD GPUs
|
||||
|
||||
In collaboration with the AMD team, we have achieved Day-One support for AMD GPUs using SGLang, with full compatibility for both FP8 and BF16 precision. For detailed guidance, please refer to the [SGLang instructions](#63-inference-with-lmdeploy-recommended).
|
||||
|
||||
### 6.8 Recommended Inference Functionality with Huawei Ascend NPUs
|
||||
The [MindIE](https://www.hiascend.com/en/software/mindie) framework from the Huawei Ascend community has successfully adapted the BF16 version of DeepSeek-V3. For step-by-step guidance on Ascend NPUs, please follow the [instructions here](https://modelers.cn/models/MindIE/deepseekv3).
|
||||
|
||||
|
||||
## 7. License
|
||||
This code repository is licensed under [the MIT License](LICENSE-CODE). The use of DeepSeek-V3 Base/Chat models is subject to [the Model License](LICENSE-MODEL). DeepSeek-V3 series (including Base and Chat) supports commercial use.
|
||||
- **Code**: Licensed under the [MIT License](LICENSE-CODE).
|
||||
- **Model**: Governed by the [DeepSeek Model License](LICENSE-MODEL), supporting commercial use.
|
||||
|
||||
## 8. Citation
|
||||
```
|
||||
|
||||
```bibtex
|
||||
@misc{deepseekai2024deepseekv3technicalreport,
|
||||
title={DeepSeek-V3 Technical Report},
|
||||
author={DeepSeek-AI},
|
||||
year={2024},
|
||||
eprint={2412.19437},
|
||||
archivePrefix={arXiv},
|
||||
primaryClass={cs.CL},
|
||||
url={https://arxiv.org/abs/2412.19437},
|
||||
title={DeepSeek-V3 Technical Report},
|
||||
author={DeepSeek-AI},
|
||||
year={2024},
|
||||
eprint={2412.19437},
|
||||
archivePrefix={arXiv},
|
||||
primaryClass={cs.CL},
|
||||
url={https://arxiv.org/abs/2412.19437},
|
||||
}
|
||||
```
|
||||
|
||||
## 9. Contact
|
||||
If you have any questions, please raise an issue or contact us at [service@deepseek.com](service@deepseek.com).
|
||||
## 9. Contact Us
|
||||
|
||||
For questions, feedback, or support, please:
|
||||
- Raise an issue on [GitHub](https://github.com/deepseek-ai/DeepSeek-V3).
|
||||
- Email us at [service@deepseek.com](mailto:service@deepseek.com).
|
||||
|
Loading…
Reference in New Issue
Block a user