Clean up and optimize Triton FP8 kernels

- Improved readability and structure of Triton kernels for FP8 weight dequantization and matrix multiplication (GEMM)
- Added comments for clarity
- Replaced hardcoded block sizes with configurable parameters
- Improved safety using tl.cdiv and masking
- Renamed variables and ensured consistency in naming
This commit is contained in:
Gabriel Caetano 2025-04-08 22:33:48 -03:00
parent 61790e1653
commit a7bab5c920

View File

@ -2,18 +2,22 @@ import torch
import triton import triton
import triton.language as tl import triton.language as tl
@triton.jit
def weight_dequant_kernel( def weight_dequant_kernel(
q_ptr, s_ptr, out_ptr, M, N, K, q_ptr, s_ptr, out_ptr, M, N,
stride_qm, stride_qk, stride_sm, stride_sn, stride_qm, stride_qn, stride_sm, stride_sn,
stride_om, stride_on, stride_om, stride_on,
BLOCK_SIZE_M: tl.constexpr, BLOCK_SIZE_N: tl.constexpr, BLOCK_SIZE_K: tl.constexpr BLOCK_SIZE_M: tl.constexpr, BLOCK_SIZE_N: tl.constexpr
): ):
""" """
Kernel para desquantização de pesos FP8. Triton kernel for FP8 weight dequantization.
out = q * s
""" """
pid = tl.program_id(axis=0) pid = tl.program_id(axis=0)
pid_m = pid // (N // BLOCK_SIZE_N) num_blocks_n = tl.cdiv(N, BLOCK_SIZE_N)
pid_n = pid % (N // BLOCK_SIZE_N) pid_m = pid // num_blocks_n
pid_n = pid % num_blocks_n
offs_m = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M) offs_m = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)
offs_n = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N) offs_n = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)
@ -21,7 +25,7 @@ def weight_dequant_kernel(
mask_m = offs_m < M mask_m = offs_m < M
mask_n = offs_n < N mask_n = offs_n < N
q_ptrs = q_ptr + offs_m[:, None] * stride_qm + offs_n[None, :] * stride_qk q_ptrs = q_ptr + offs_m[:, None] * stride_qm + offs_n[None, :] * stride_qn
s_ptrs = s_ptr + offs_m[:, None] * stride_sm + offs_n[None, :] * stride_sn s_ptrs = s_ptr + offs_m[:, None] * stride_sm + offs_n[None, :] * stride_sn
out_ptrs = out_ptr + offs_m[:, None] * stride_om + offs_n[None, :] * stride_on out_ptrs = out_ptr + offs_m[:, None] * stride_om + offs_n[None, :] * stride_on
@ -31,6 +35,7 @@ def weight_dequant_kernel(
out = q.to(tl.float32) * s.to(tl.float32) out = q.to(tl.float32) * s.to(tl.float32)
tl.store(out_ptrs, out, mask=mask_m[:, None] & mask_n[None, :]) tl.store(out_ptrs, out, mask=mask_m[:, None] & mask_n[None, :])
@triton.jit @triton.jit
def fp8_gemm_kernel( def fp8_gemm_kernel(
a_ptr, b_ptr, c_ptr, M, N, K, a_ptr, b_ptr, c_ptr, M, N, K,
@ -39,68 +44,76 @@ def fp8_gemm_kernel(
BLOCK_SIZE_M: tl.constexpr, BLOCK_SIZE_N: tl.constexpr, BLOCK_SIZE_K: tl.constexpr BLOCK_SIZE_M: tl.constexpr, BLOCK_SIZE_N: tl.constexpr, BLOCK_SIZE_K: tl.constexpr
): ):
""" """
Kernel para multiplicação de matrizes com FP8. Triton kernel for FP8 GEMM (General Matrix Multiply)
c = a @ b
""" """
pid = tl.program_id(axis=0) pid = tl.program_id(axis=0)
pid_m = pid // (N // BLOCK_SIZE_N) num_blocks_n = tl.cdiv(N, BLOCK_SIZE_N)
pid_n = pid % (N // BLOCK_SIZE_N) pid_m = pid // num_blocks_n
pid_n = pid % num_blocks_n
offs_m = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M) offs_m = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)
offs_n = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N) offs_n = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)
offs_k = tl.arange(0, BLOCK_SIZE_K)
mask_m = offs_m < M mask_m = offs_m < M
mask_n = offs_n < N mask_n = offs_n < N
a_ptrs = a_ptr + offs_m[:, None] * stride_am + offs_k[None, :] * stride_ak
b_ptrs = b_ptr + offs_k[:, None] * stride_bk + offs_n[None, :] * stride_bn
c_ptrs = c_ptr + offs_m[:, None] * stride_cm + offs_n[None, :] * stride_cn c_ptrs = c_ptr + offs_m[:, None] * stride_cm + offs_n[None, :] * stride_cn
acc = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32)
accumulator = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32)
for k in range(0, K, BLOCK_SIZE_K): for k in range(0, K, BLOCK_SIZE_K):
a = tl.load(a_ptrs, mask=mask_m[:, None], other=0) offs_k = k + tl.arange(0, BLOCK_SIZE_K)
b = tl.load(b_ptrs, mask=mask_n[None, :], other=0) mask_k = offs_k < K
accumulator += tl.dot(a, b)
a_ptrs += BLOCK_SIZE_K * stride_ak a_ptrs = a_ptr + offs_m[:, None] * stride_am + offs_k[None, :] * stride_ak
b_ptrs += BLOCK_SIZE_K * stride_bk b_ptrs = b_ptr + offs_k[:, None] * stride_bk + offs_n[None, :] * stride_bn
tl.store(c_ptrs, accumulator, mask=mask_m[:, None] & mask_n[None, :]) a = tl.load(a_ptrs, mask=mask_m[:, None] & mask_k[None, :], other=0)
b = tl.load(b_ptrs, mask=mask_k[:, None] & mask_n[None, :], other=0)
def dequantize_weights(q_weight: torch.Tensor, scale: torch.Tensor) -> torch.Tensor: acc += tl.dot(a, b)
tl.store(c_ptrs, acc, mask=mask_m[:, None] & mask_n[None, :])
def dequantize_weights(q_weight: torch.Tensor, scale: torch.Tensor, block_size=16) -> torch.Tensor:
""" """
Função para desquantizar pesos FP8 com segurança. Dequantizes FP8 weights with scaling.
""" """
assert q_weight.shape == scale.shape, "Dimensões incompatíveis entre peso quantizado e escala." assert q_weight.shape == scale.shape, "Mismatched shapes between quantized weights and scales."
out = torch.empty_like(q_weight, dtype=torch.float32) M, N = q_weight.shape
weight_dequant_kernel[ output = torch.empty_like(q_weight, dtype=torch.float32)
(q_weight.shape[0] // 16, q_weight.shape[1] // 16)
]( grid = (triton.cdiv(M, block_size) * triton.cdiv(N, block_size),)
q_weight, scale, out, weight_dequant_kernel[grid](
q_weight.shape[0], q_weight.shape[1], q_weight.shape[1], q_weight, scale, output,
M, N,
q_weight.stride(0), q_weight.stride(1), q_weight.stride(0), q_weight.stride(1),
scale.stride(0), scale.stride(1), scale.stride(0), scale.stride(1),
out.stride(0), out.stride(1), output.stride(0), output.stride(1),
16, 16, 16 block_size, block_size
) )
return out return output
def fp8_gemm(a: torch.Tensor, b: torch.Tensor) -> torch.Tensor:
"""
Multiplicação de matrizes FP8 segura e eficiente.
"""
assert a.shape[1] == b.shape[0], "Dimensões incompatíveis para multiplicação de matrizes."
c = torch.empty((a.shape[0], b.shape[1]), dtype=torch.float32) def fp8_gemm(a: torch.Tensor, b: torch.Tensor, block_size=16) -> torch.Tensor:
fp8_gemm_kernel[ """
(a.shape[0] // 16, b.shape[1] // 16) Performs FP8 GEMM (a @ b) with Triton.
]( """
a, b, c, assert a.shape[1] == b.shape[0], "Incompatible matrix dimensions."
a.shape[0], b.shape[1], a.shape[1],
M, K = a.shape
_, N = b.shape
output = torch.empty((M, N), dtype=torch.float32)
grid = (triton.cdiv(M, block_size) * triton.cdiv(N, block_size),)
fp8_gemm_kernel[grid](
a, b, output,
M, N, K,
a.stride(0), a.stride(1), a.stride(0), a.stride(1),
b.stride(0), b.stride(1), b.stride(0), b.stride(1),
c.stride(0), c.stride(1), output.stride(0), output.stride(1),
16, 16, 16 block_size, block_size, block_size
) )
return c return output